Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation
Prev
Next
Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利)1, †, Qing Liu(刘青)1 , and Yunbo Zhang(张云波)2
1 Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 2 Key Laboratory of Optical Field Manipulation of Zhejiang Province and Physics Department of Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract We investigate quantum dynamics of a quantum walker on a finite bipartite non-Hermitian lattice, in which the particle can leak out with certain rate whenever it visits one of the two sublattices. Quantum walker initially located on one of the non-leaky sites will finally totally disappear after a length of evolution time and the distribution of decay probability on each unit cell is obtained. In one regime, the resultant distribution shows an expected decreasing behavior as the distance from the initial site increases. However, in the other regime, we find that the resultant distribution of local decay probability is very counterintuitive, in which a relatively high population of decay probability appears on the edge unit cell which is the farthest from the starting point of the quantum walker. We then analyze the energy spectrum of the non-Hermitian lattice with pure loss, and find that the intriguing behavior of the resultant decay probability distribution is intimately related to the existence and specific property of the edge states, which are topologically protected and can be well predicted by the non-Bloch winding number. The exotic dynamics may be observed experimentally with arrays of coupled resonator optical waveguides.
Keywords:
quantum walk
non-Hermitian lattice
dissipations
edge states
Received: 19 November 2020
Revised: 14 December 2020
Accepted manuscript online: 30 December 2020
PACS:
05.40.Fb
(Random walks and Levy flights)
03.65.Vf
(Phases: geometric; dynamic or topological)
42.82.Et
(Waveguides, couplers, and arrays)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404199 and 11674201), Natural Science Foundation of Shanxi Province, China (Grant No. 1331KSC), Natural Science Foundation for Youths of Shanxi Province, China (Grant No. 2015021012), and Research Initiation Funds from SXU (Grant No. 216533801001).
Corresponding Authors:
† Corresponding author. E-mail: liwangiphy@sxu.edu.cn
Cite this article:
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波) Quantum dynamics on a lossy non-Hermitian lattice 2021 Chin. Phys. B 30 020506
1 Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687 2 Kempe J 2003 Comtemporary Physics 44 307 3 Wang J B and Manouchehri K 2013 Physical implementation of quantum walks (Berlin: Springer) 4 Bouwmeester D, Marzoli I, Karman G P, Schleich W and Woerdman J P 1999 Phys. Rev. A 61 013410 5 Karski M, F\"orster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174 6 Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Islam R and Greiner M 2015 Science 347 1229 7 Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 130501 8 Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B and Pan J W 2019 Science 364 753 9 Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N S, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B and Pan J W 2019 Phys. Rev. Lett. 123 050502 10 Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602 11 Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J and Sanders B C 2015 Phys. Rev. Lett. 114 140502 12 Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504 13 Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502 14 Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y and Han R D 2003 Phys. Rev. A 67 042316 15 Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429 16 Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru Guizik A, Demler E and White A G 2012 Nat. Commun. 3 882 17 Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023 18 Benedetti C, Buscemi F and Bordone P 2012 Phys. Rev. A 85 042314 19 Qin X Z, Ke Y G, Guan X W, Li Z B, Andrei N and Lee C H 2014 Phys. Rev. A 90 062301 20 Wang L, Hao Y and Chen S 2008 Eur. Phys. J. D 48 229 21 Lahini Y, Verbin M, Huber S D, Bromberg Y, Pugatch R and Silberberg Y 2012 Phys. Rev. A 86 011603 22 Wang L, Hao Y J and Chen S 2010 Phys. Rev. A 81 063637 23 Wang L M, Wang L and Zhang Y B 2014 Phys. Rev. A 90 063618 24 Gan S, He X D, Liu B, Feng C D 2015 Chin. Phys. Lett. 32 080305 25 Yin Y, Katsanos D E and Evangelou S N 2008 Phys. Rev. A 77 022302 26 Beggi A, Buscemi F and Bordone P 2016 Quantum Inf. Proc. 15 3711 27 Zhao J, Hu Y Y, Tong P Q 2015 Chin. Phys. Lett. 32 060501 28 Li Z J, Izaac J A and Wang J B 2013 Phys. Rev. A 87 012314 29 Li Z J, Wang J B 2015 Sci. Rep. 5 13585 30 Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 106402 31 Wang L, Liu N, Chen S and Zhang Y B 2015 Phys. Rev. A 92 053606 32 Wang L, Liu N, Chen S and Zhang Y B 2017 Phys. Rev. A 95 013619 33 Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 34 Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401 35 Bender C M 2007 Rep. Prog. Phys. 70 947 36 Moiseyev N 2011 Non-Hermitian Quantum Mechanics (England: Cambridge University Press) 37 Shen H T, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402 39 Yin C H, Jiang H, Li L H, L\"u R and Chen S 2018 Phys. Rev. A 97 052115 40 Shen H T and Fu L 2018 Phys. Rev. Lett. 121 026403 41 Budich J C, Carlstr\"om J, Kunst F K and Bergholtz E J 2019 Phys. Rev. B 99 041406 42 Yang Z S and Hu J P 2019 Phys. Rev. B 99 081102 43 Liu C H, Jiang H and Chen S 2019 Phys. Rev. B 99 125103 44 Chen Y and Zhai H 2018 Phys. Rev. B 98 245130 45 Yoshida T, Peters R, Kawakami N and Hatsugai Y 2019 Phys. Rev. B 99 121101 46 Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X and Du J F 2019 Science 364 878 47 Zeng Q B, Zhu B G, Chen S, You L and L\"u R 2016 Phys. Rev. A 94 022119 48 Li C, Zhang X Z, Zhang G and Song Z 2018 Phys. Rev. B 97 115436 49 Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116 50 Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701 51 Gong Z P, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 52 Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167 53 Wang X R, Guo C X and Kou S P 2020 Phys. Rev. B 101 121116 54 Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N and Segev M 2018 Science 359 eaar4003 55 Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Chritodoulides D N and Khajavikhan M 2018 Science 359 eaar4005 56 Bahari B, Ndao A, Vallini F, Amili A E, Fainman Y and Kant\'e B 2017 Science 358 636 57 Mochizuki K, Kim D and Obuse H 2016 Phys. Rev. A 93 062116 58 Song F, Yao S Y and Wang Z 2019 Phys. Rev. Lett. 123 170401 59 Pan L, Wang X L, Cui X L and Chen S 2020 Phys. Rev. A 102 023306 60 Diehl S, Rico E, Baranov M A and Zoller P 2011 Nat. Phys. 7 971 61 Verstraete F, Wolf M M and Ignacio Cirac J I 2009 Nat. Phys. 5 633 62 Rudner M S and Levitov L S 2009 Phys. Rev. Lett. 102 065703 63 Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402 64 Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 65 Tomita T, Nakajima S, Danshita I, Takasu Y and Takahashi Y 2017 Sci. Adv. 3 e1701513 66 Tomita T, Nakajima S, Takasu Y and Takahashi Y 2019 Phys. Rev. A 99 031601(R) 67 Jacqmin T, Carusotto I, Sagnes I, Abbarchi M, Solnyshkov D D, Malpuech G, Galopin E, Lema\itre A,, Bloch J and Amo A 2014 Phys. Rev. Lett. 112 116402 69 Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, H\"ofling S, Yamamoto Y, Nori F and Kivshar Y S 2015 Nature 526 554 70 Martinez Alvarez V M, Barrios Vargas J E, Berdakin M and Foa Torres L E 2018 Eur. Phys. J. Spec. Top. 227 1295 71 Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401 72 Xiong Y 2018 J. Phys. Commun. 2 035043 73 Martinez Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Phys. Rev. B 97 121401 74 Jin L and Song Z 2019 Phys. Rev. B 99 081103 75 Herviou L, Bardarson J H and Regnault N 2019 Phys. Rev. A 99 052118 77 Deng T S and Yi W 2019 Phys. Rev. B 100 035102 78 Lee T E 2016 Phys. Rev. Lett. 116 133903 79 Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 80 Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404 81 Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802 82 Zhang K, Yang Z S and Fang C 2020 Phys. Rev. Lett. 125 126402 83 Yang Z H, Zhang K, Fang C and Hu J P 2020 arXiv: 1912.05499 [cond-mat.mes-hall]) 84 Yi Y F and Yang Z S 2020 Phys. Rev. Lett. 125 186802) 85 Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 86 Song F, Yao S Y and Wang Z 2019 Phys. Rev. Lett. 123 246801 87 Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501 88 Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 89 Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117 90 Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 91 Hafezi M, Demler E A, Lukin M D and Taylor J M 2011 Nat. Phys. 7 907 92 Viyuela O, Vodola D, Pupillo G and Martin-Delgado M A 2016 Phys. Rev. B 94 125121
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Online attention
Altmetric
blogs
Facebook pages
Wikipedia page
Google+ users
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics