Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044702    DOI: 10.1088/1674-1056/ac29ae

Shedding vortex simulation method based on viscous compensation technology research

Hao Zhou(周昊)1, Lei Wang(汪雷)2, Zhang-Feng Huang(黄章峰)1,†, and Jing-Zhi Ren(任晶志)2
1 Department of Mechanics, Tianjin University, Tianjin 300072, China;
2 Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing 100076, China
Abstract  Owing to the influence of the viscosity of the flow field, the strength of the shedding vortex decreases gradually in the process of backward propagation. Large-scale vortexes constantly break up, forming smaller vortexes. In engineering, when numerical simulation of vortex evolution process is carried out, a large grid is needed to be arranged in the area of outflow field far from the boundary layer in order to ensure the calculation efficiency. As a result, small scale vortexes at the far end of the flow field cannot be captured by the sparse grid in this region, resulting in the dissipation or even disappearance of vortexes. In this paper, the effect of grid scale is quantified and compared with the viscous effect through theoretical derivation. The theoretical relationship between the mesh viscosity and the original viscosity of the flow field is established, and the viscosity term in the turbulence model is modified. This method proves to be able to effectively improve the intensity of small-scale shedding vortexes at the far end of the flow field under the condition of sparse grid. The error between the simulation results and the results obtained by using fine mesh is greatly reduced, the calculation time is shortened, and the high-precision and efficient simulation of the flow field is realized.
Keywords:  shedding vortex      viscosity analysis      numerical dissipation      turbulence models  
Received:  24 July 2021      Revised:  09 September 2021      Accepted manuscript online:  24 September 2021
PACS:  47.27.-i (Turbulent flows)  
  47.27.E- (Turbulence simulation and modeling) (Vortex streets)  
  47.32.C- (Vortex dynamics)  
Fund: Project supported by the National Key Project, China (Grant No. GJXM92579) and the National Natural Science Foundation of China (Grant No. 12072232).
Corresponding Authors:  Zhang-Feng Huang     E-mail:

Cite this article: 

Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志) Shedding vortex simulation method based on viscous compensation technology research 2022 Chin. Phys. B 31 044702

[1] Li Z Y, Zhang H B, Bailey S C, Hoagg J B and Alexandre M 2017 J. Comput. Phys. 345 111
[2] Ni X P, Cai R H and Cao X J 2003 Chin. J. Aeronaut. 24 15
[3] Zhao Q J, Jiang S and Li P 2017 Acta Aerodyn. Sin. 35 544
[4] Wu J, Qiu Y L, Shu C and Zhao N 2014 Phys. Fluids 26 103601
[5] Mary I and Sagaut P 2002 AIAA J. 40 1139
[6] An H, Cheng L and Zhao M 2011 J. Fluid Mech. 666 77
[7] Sherwin J S, Meneghini R J and Serson D 2017 J. Fluid Mech. 826 714
[8] Yang A M, Liu J H and Weng P F 2009 Acta Aerodyn. Sin. 27 5
[9] Xu L, Yang A M and Weng P F 2010 Chin. J. Comput. Mech. 27 607
[10] Xia Z F and Yang Y 2001 Chin. J. Aeronaut. 32 1195
[11] Tang H S, Jones S C and Fotis S 2003 J. Comput. Phys. 191 567
[12] Markus D, Manuel K, Ewald K and Siegfried W 2007 AIAA J. 45 2062
[13] Nathan H 2002 J. Aircraft. 39 800
[14] Yin Y H, Yang P, Zhang Y F, Chen H X and Fu S 2020 Phys. Fluids 32 105117
[15] Friederich T and Kloker M J 2012 J. Fluid Mech. 706 470
[16] Wilcox D C 1988 AIAA J. 220 1
[17] Wilcox D C 1993 AIAA J. 31 1414
[18] Menter F R 1994 AIAA J. 32 1598
[19] Zou S F, Liu L Q and Wu J Z 2021 Phys. Fluids 33 036107
[20] Akira Y, Hiroyuki A, Yuichi M, Hitoshi F and Yasuhiro M A 2012 Phys. Fluids 24 075109
[21] Yu C P, Hong R K, Xiao Z L and Chen S Y 2013 Phys. Fluids 25 095101
[22] Keller H B 1978 Annu. Rev. Fluid Mech. 10 417
[23] Liu Y L, Zhao Y J and Liu Z X 2016 Build. Simul. 9 677
[24] Wang H D, Zhai Z Q John and Liu X 2014 Build. Simul. 7 155
[25] Xiao M J, Zhang Y S and Tian B L 2020 Phys. Fluids 32 092104
[26] Norberg C 2001 J. Fluids Struct. 15 459
[27] Luo H and Spiegel S 2010 AIAA J. 48 2639
[28] Rezaeiravesh S snd Liefvendahl M 2018 Phys. Fluids 30 055106
[29] Wang H D and Zhai Z Q John 2012 Build. Env. 52 107
[30] Henderson R 1997 J. Fluid Mech. 352 65
[31] Chen H Q and Huang M K 2000 Acta Aerodyn. Sin. 18 366
[32] Zhang W and Samtaney R 2016 Phys. Fluids 28 044105
[1] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[2] Large eddy simulations of a triangular jet and its counterpart through a chamber
Xiu Xiao(肖秀), Guo-Chang Wang(王国昌), Min-Yi Xu(徐敏义), Jian-Chun Mi(米建春). Chin. Phys. B, 2020, 29(6): 064701.
[3] Numerical investigation of the interaction of the turbulent dual-jet and acoustic propagation
Yi-Ming Li(李一明), Bao-Kuan Li(李宝宽), Feng-Sheng Qi(齐凤升), Xi-Chun Wang(王喜春). Chin. Phys. B, 2017, 26(2): 024701.
[4] Three-dimensional turbulent flow over cube-obstacles
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014703.
[5] Influence of colloidal particle transfer on the quality of self-assembling colloidal photonic crystal under confined condition
Zhao Yong-Qiang (赵永强), Li Juan (李娟), Liu Qiu-Yan (刘秋艳), Dong Wen-Jun (董文钧), Chen Ben-Yong (陈本永), Li Chao-Rong (李超荣). Chin. Phys. B, 2015, 24(2): 028104.
[6] Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet
Mi Jian-Chun(米建春) and Du Cheng(杜诚) . Chin. Phys. B, 2011, 20(12): 124701.
[7] Analytical investigation on mean and turbulent velocity fields of a plane jet
Mi Jian-Chun(米建春) and Feng Bao-Ping(冯宝平) . Chin. Phys. B, 2011, 20(7): 074701.
[8] Correlation dimension analysis and capillary wave turbulence in Dragon-Wash phenomena
Peng Huai-Wu(彭怀午), Li Rui-Qu(李睿劬), Chen Song-Ze(陈松泽), and Li Cun-Biao(李存标). Chin. Phys. B, 2008, 17(2): 637-643.
[9] Mathematical concepts and their physical foundation in the nonstandard analysis theory of turbulence
Wu Feng(吴峰). Chin. Phys. B, 2007, 16(5): 1186-1196.
[10] New equation of turbulent fibre suspensions and its solution and application to the pipe flow
Lin Jian-Zhong (林建忠), Li Jun (李俊), Zhu Li (朱力), Olson James A.. Chin. Phys. B, 2005, 14(6): 1185-1192.
[11] Numerical analysis of fluid flow through a cylinder array using a lattice Boltzmann model
Dong Ping (董平), Feng Shi-De (冯士德), Zhao Ying (赵颖). Chin. Phys. B, 2004, 13(4): 434-440.
No Suggested Reading articles found!