Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 080303    DOI: 10.1088/1674-1056/28/8/080303
GENERAL Prev   Next  

Dissipative generation for steady-state entanglement of two transmons in circuit QED

Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩)
Department of Nuclear Medicine, Yanbian University Hospital, Yanji 133000, China
Abstract  We present a dissipative scheme to generate an entangled steady-state between two superconducting transmon qutrits separately embedded in two coupled transmission line resonators in a circuit quantum electrodynamics (QED) setup. In our scheme, the resonant qutrit-resonator interaction and photon hopping between resonators jointly induce asymmetric energy gaps in the dressed state subspaces. The coherent driving fields induce the specific dressed state transition and the dissipative processes lead to the gradual accumulation in the population of target state, combination of both drives the system into a steady-state entanglement. Numerical simulation shows that the maximally entangled state can be produced with high fidelity and strong robustness against the cavity decay and qutrit decay, and no requirements for accurate time control. The scheme is achievable with the current experimental technologies.
Keywords:  steady-state entanglement      dissipation      dressed state  
Received:  01 April 2019      Revised:  20 May 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
  32.80.Ee (Rydberg states)  
Corresponding Authors:  Ming-Hao Li     E-mail:  mhli27@sina.com

Cite this article: 

Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩) Dissipative generation for steady-state entanglement of two transmons in circuit QED 2019 Chin. Phys. B 28 080303

[40] Wendin G and Shumeikoa V S 2007 Low Temp. Phys. 33 724
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. A 47 777
[41] Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
[2] Schrödinger E 1935 Naturwissenschaften 23 823
[42] Raftery J, Sadri D, Schmidt S, Treci H E and Houck A A 2014 Phys. Rev. X 4 031043
[3] Horodechi R, Horodeck P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[43] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162-167
[4] Lee K C, Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X M, Champion T, Michelberger P, Reim K F, England D, Jaksch D and Walmsley I A 2011 Science 334 1253
[44] Shankar S, Hatridge M, Leghtas Z, Sliwa K M, Narla A, Vool U, Girvin S M, Frunzio L, Mirrahimi M and Devoret M H 2013 Nature 504 419
[5] Vacanti G and Beige A 2009 New J. Phys. 11 083008
[45] Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502(R)
[6] Lin Y, Gaebler J P, Reiter F, Tan T R, Bowler R, Sorensen R S, Leibfried D and Wineland D J 2013 Nature 504 415
[7] Carr A W and Saffman M 2013 Phys. Rev. Lett. 111 033607
[8] Man Z X, Xia Y J, and Franco R L 2015 Sci. Rep. 8 13843
[9] Plenio M B, Huelga S F, Beige A and Knigh P L 1999 Phys. Rev. A 59 2468
[10] Clark S, Peng A, Gu M and Parkins S 2003 Phys. Rev. Lett. 91 177901
[11] Busch J, De S, Ivanov S S, Torosov B T, Spiller T P and Beige A 2011 Phys. Rev. A 84 022316
[12] Kastoryano M J, Reiter F and Sorensen A S 2011 Phys. Rev. Lett. 106 090502
[13] Reiter F, Kastoryano M J and Sorensen A S 2012 New J. Phys. 14 053022
[14] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302
[15] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2012 Europhys. Lett. 99 20003
[16] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2013 Quantum Inf. Comput. 13 281
[17] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2014 Opt. Lett. 39 6046
[18] Su S L, Shao X Q, Wang H F and Zhang S 2014 Phys. Rev. A 90 054302
[19] Su S L, Shao X Q, Wang H F and Zhang S 2014 Sci. Rep. 4 7566
[20] Su S L, Guo Q, Wang H F and Zhang S 2015 Phys. Rev. A 92 022328
[21] Su S L, Shao X Q, Guo Q, Cheng L Y, Wang H F and Zhang S 2015 Eur. Phys. J. D 69 123
[22] Zheng S B and Shen L T 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055502
[23] Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 012319
[24] Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 052313
[25] Parkins A S, Solano E and Cirac J I 2006 Phys. Rev. Lett. 96 053602
[26] Muschik C A, Polzik E S and Cirac J I 2011 Phys. Rev. A 83 052312
[27] Dalla Torre E G, Otterbach J, Demler E, Vuletic V and Lukin M D 2013 Phys. Rev. Lett. 110 120402
[28] Poyatos J F, Cirac J I and Zoller P 1996 Phys. Rev. Lett. 77 4728
[29] Cho J, Bose S and Kim M S 2011 Phys. Rev. Lett. 106 020504
[30] Barreiro J T, Muller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P and Blatt R 2011 Nature 470 486
[31] Gonzalez-Tudela A, Martín-Cano D, Moreno E, MartínMoreno L, Tejedor C and García-Vidal F J 2011 Phys. Rev. Lett. 106 020501
[32] Gullans M, Tiecke T G, Chang D E, Feist J, Thompson J D, Cirac J I, Zoller P and Lukin M D 2012 Phys. Rev. Lett. 109 235309
[33] Gonzalez-Tudela A and Porras D 2013 Phys. Rev. Lett. 110 080502
[34] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Nat. Phys. 4 878
[35] Foss-Feig M, Daley A J, Thompson J K and Rey A M 2012 Phys. Rev. Lett. 109 230501
[36] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I and Polzik E S 2011 Phys. Rev. Lett. 107 080503
[37] Schmidt S, Houck A A, Blatter G and Türeci H E 2010 Phys. Rev. B 82 100507(R)
[38] Clarke J and Wilhelm F K 2008 Nature 453 1031
[39] Makiilin Y, Schon G and Siinirman A 2001 Rev. Mod. Phys. 73 357
[40] Wendin G and Shumeikoa V S 2007 Low Temp. Phys. 33 724
[41] Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
[42] Raftery J, Sadri D, Schmidt S, Treci H E and Houck A A 2014 Phys. Rev. X 4 031043
[43] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162-167
[44] Shankar S, Hatridge M, Leghtas Z, Sliwa K M, Narla A, Vool U, Girvin S M, Frunzio L, Mirrahimi M and Devoret M H 2013 Nature 504 419
[45] Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502(R)
[1] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[2] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[3] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[4] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[5] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[6] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[7] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[8] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[9] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[10] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[11] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[12] Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2019, 28(6): 060303.
[13] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[14] Effect of different bending shapes on thermal properties of flexible light-emitting diode filament
Liping Wang(王立平), Wenbo Li(李文博), Yichao Xu(徐一超), Bobo Yang(杨波波), Mingming Shi(石明明), Jun Zou(邹军), Yang Li(李杨), Xinglu Qian(钱幸璐), Fei Zheng(郑飞), Lei Yang(杨磊). Chin. Phys. B, 2018, 27(11): 110701.
[15] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
No Suggested Reading articles found!