|
|
Dissipative generation for steady-state entanglement of two transmons in circuit QED |
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩) |
Department of Nuclear Medicine, Yanbian University Hospital, Yanji 133000, China |
|
|
Abstract We present a dissipative scheme to generate an entangled steady-state between two superconducting transmon qutrits separately embedded in two coupled transmission line resonators in a circuit quantum electrodynamics (QED) setup. In our scheme, the resonant qutrit-resonator interaction and photon hopping between resonators jointly induce asymmetric energy gaps in the dressed state subspaces. The coherent driving fields induce the specific dressed state transition and the dissipative processes lead to the gradual accumulation in the population of target state, combination of both drives the system into a steady-state entanglement. Numerical simulation shows that the maximally entangled state can be produced with high fidelity and strong robustness against the cavity decay and qutrit decay, and no requirements for accurate time control. The scheme is achievable with the current experimental technologies.
|
Received: 01 April 2019
Revised: 20 May 2019
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
32.80.Ee
|
(Rydberg states)
|
|
Corresponding Authors:
Ming-Hao Li
E-mail: mhli27@sina.com
|
Cite this article:
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩) Dissipative generation for steady-state entanglement of two transmons in circuit QED 2019 Chin. Phys. B 28 080303
|
[40] |
Wendin G and Shumeikoa V S 2007 Low Temp. Phys. 33 724
|
[1] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. A 47 777
|
[41] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[2] |
Schrödinger E 1935 Naturwissenschaften 23 823
|
[42] |
Raftery J, Sadri D, Schmidt S, Treci H E and Houck A A 2014 Phys. Rev. X 4 031043
|
[3] |
Horodechi R, Horodeck P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[43] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162-167
|
[4] |
Lee K C, Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X M, Champion T, Michelberger P, Reim K F, England D, Jaksch D and Walmsley I A 2011 Science 334 1253
|
[44] |
Shankar S, Hatridge M, Leghtas Z, Sliwa K M, Narla A, Vool U, Girvin S M, Frunzio L, Mirrahimi M and Devoret M H 2013 Nature 504 419
|
[5] |
Vacanti G and Beige A 2009 New J. Phys. 11 083008
|
[45] |
Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502(R)
|
[6] |
Lin Y, Gaebler J P, Reiter F, Tan T R, Bowler R, Sorensen R S, Leibfried D and Wineland D J 2013 Nature 504 415
|
[7] |
Carr A W and Saffman M 2013 Phys. Rev. Lett. 111 033607
|
[8] |
Man Z X, Xia Y J, and Franco R L 2015 Sci. Rep. 8 13843
|
[9] |
Plenio M B, Huelga S F, Beige A and Knigh P L 1999 Phys. Rev. A 59 2468
|
[10] |
Clark S, Peng A, Gu M and Parkins S 2003 Phys. Rev. Lett. 91 177901
|
[11] |
Busch J, De S, Ivanov S S, Torosov B T, Spiller T P and Beige A 2011 Phys. Rev. A 84 022316
|
[12] |
Kastoryano M J, Reiter F and Sorensen A S 2011 Phys. Rev. Lett. 106 090502
|
[13] |
Reiter F, Kastoryano M J and Sorensen A S 2012 New J. Phys. 14 053022
|
[14] |
Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302
|
[15] |
Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2012 Europhys. Lett. 99 20003
|
[16] |
Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2013 Quantum Inf. Comput. 13 281
|
[17] |
Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2014 Opt. Lett. 39 6046
|
[18] |
Su S L, Shao X Q, Wang H F and Zhang S 2014 Phys. Rev. A 90 054302
|
[19] |
Su S L, Shao X Q, Wang H F and Zhang S 2014 Sci. Rep. 4 7566
|
[20] |
Su S L, Guo Q, Wang H F and Zhang S 2015 Phys. Rev. A 92 022328
|
[21] |
Su S L, Shao X Q, Guo Q, Cheng L Y, Wang H F and Zhang S 2015 Eur. Phys. J. D 69 123
|
[22] |
Zheng S B and Shen L T 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055502
|
[23] |
Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 012319
|
[24] |
Shao X Q, You J B, Zheng T Y, Oh C H and Zhang S 2014 Phys. Rev. A 89 052313
|
[25] |
Parkins A S, Solano E and Cirac J I 2006 Phys. Rev. Lett. 96 053602
|
[26] |
Muschik C A, Polzik E S and Cirac J I 2011 Phys. Rev. A 83 052312
|
[27] |
Dalla Torre E G, Otterbach J, Demler E, Vuletic V and Lukin M D 2013 Phys. Rev. Lett. 110 120402
|
[28] |
Poyatos J F, Cirac J I and Zoller P 1996 Phys. Rev. Lett. 77 4728
|
[29] |
Cho J, Bose S and Kim M S 2011 Phys. Rev. Lett. 106 020504
|
[30] |
Barreiro J T, Muller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P and Blatt R 2011 Nature 470 486
|
[31] |
Gonzalez-Tudela A, Martín-Cano D, Moreno E, MartínMoreno L, Tejedor C and García-Vidal F J 2011 Phys. Rev. Lett. 106 020501
|
[32] |
Gullans M, Tiecke T G, Chang D E, Feist J, Thompson J D, Cirac J I, Zoller P and Lukin M D 2012 Phys. Rev. Lett. 109 235309
|
[33] |
Gonzalez-Tudela A and Porras D 2013 Phys. Rev. Lett. 110 080502
|
[34] |
Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Nat. Phys. 4 878
|
[35] |
Foss-Feig M, Daley A J, Thompson J K and Rey A M 2012 Phys. Rev. Lett. 109 230501
|
[36] |
Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I and Polzik E S 2011 Phys. Rev. Lett. 107 080503
|
[37] |
Schmidt S, Houck A A, Blatter G and Türeci H E 2010 Phys. Rev. B 82 100507(R)
|
[38] |
Clarke J and Wilhelm F K 2008 Nature 453 1031
|
[39] |
Makiilin Y, Schon G and Siinirman A 2001 Rev. Mod. Phys. 73 357
|
[40] |
Wendin G and Shumeikoa V S 2007 Low Temp. Phys. 33 724
|
[41] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[42] |
Raftery J, Sadri D, Schmidt S, Treci H E and Houck A A 2014 Phys. Rev. X 4 031043
|
[43] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162-167
|
[44] |
Shankar S, Hatridge M, Leghtas Z, Sliwa K M, Narla A, Vool U, Girvin S M, Frunzio L, Mirrahimi M and Devoret M H 2013 Nature 504 419
|
[45] |
Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502(R)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|