Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform |
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健)† |
School of Physics, Beihang University, Beijing 100191, China |
|
|
Abstract Stimulated Raman adiabatic passage (STIRAP) is an important technique to manipulate quantum states in quantum simulation and quantum computation. The transformation fidelity is limited in reality due to experimental imperfections. After systematically calculating the influence of dissipation caused by thermal fluctuations and instantaneous decay of the intermediate state, we find optimized control pulses of Rydberg atom in optical tweezer to increase the STIRAP fidelity via optimal control method. All constraints of currently available control lasers have been taken into account. The transition error can be further depressed when control lasers with shorter rise time and accordingly proper total evolution time are applied. Finally, the robustness of the control pulses with respect to random deviations between the theoretical pulse shape and the implemented ones is also enhanced by additional rounds of optimizations based on ensemble averaged fidelity.
|
Received: 03 February 2021
Revised: 15 April 2021
Accepted manuscript online: 29 April 2021
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the Natonal Natural Science Foundation of China (Grant No. 11904018). This research was supported by the high performance computing (HPC) resources at Beihang University and the college students' innovation and entrepreneurship training program. |
Corresponding Authors:
Jian Cui
E-mail: jiancui@buaa.edu.cn
|
Cite this article:
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健) Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform 2021 Chin. Phys. B 30 080305
|
[1] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition, (Cambridge University Press) [2] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F and Zoller P 2019 Nature 569 355 [3] Vitanov N, Fleischhauer M, Shore B and Bergmann K 2001 Coherent manipulation of atoms molecules by sequential laser pulses (Academic Press) pp. 55-190 [4] Brune M 2004 Course 3 - cavity quantum electrodynamics, in Quantum Entanglement and Information Processing, Les Houches, Vol. 79, edited by Estéve D, Raimond J M and Dalibard J (Elsevier) pp. 161-185 [5] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363 [6] Marte P, Zoller P and Hall J L 1991 Phys. Rev. A 44 R4118 [7] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003 [8] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006 [9] Bergmann K, Vitanov N V and Shore B W 2015 J. Chem. Phys. 142 170901 [10] Bergmann K, Nägerl H C, Panda C, et al. 2019 J. Phys. B: Atom. Mol. Opt. Phys. 52 202001 [11] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 [12] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003 [13] Ibáñez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett. 109 100403 [14] Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 83 062116 [15] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303 [16] Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503 [17] Zhou B B, Baksic A, Ribeiro H, Yale C G, Heremans F J, Jerger P C, Auer A, Burkard G, Clerk A A and Awschalom D D 2017 Nat. Phys. 13 330 [18] Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479 [19] Kölbl J, Barfuss A, Kasperczyk M S, Thiel L, Clerk A A, Ribeiro H and Maletinsky P 2019 Phys. Rev. Lett. 122 090502 [20] Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T and Glaser S J 2005 Journal of Magnetic Resonance 172 296 [21] Scheuer J, Kong X, Said R S, Chen J, Kurz A, Marseglia L, Du J, Hemmer P R, Montangero S, Calarco T, Naydenov B and Jelezko F 2014 New J. Phys. 16 093022 [22] Dolde F, Bergholm V, Wang Y, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Jelezko F, Neumann P, Schulte-Herbrüggen T, Biamonte J and Wrachtrup J 2014 Nat. Commun. 5 3371 [23] Frank F, Unden T, Zoller J, Said R S, Calarco T, Montangero S, Naydenov B and Jelezko F 2017 npj Quantum Information 3 48 [24] Ai M Z, Li S, Hou Z, He R, Qian Z H, Xue Z Y, Cui J M, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Applied 14 054062 [25] Choi T, Debnath S, Manning T A, Figgatt C, Gong Z X, Duan L M and Monroe C 2014 Phys. Rev. Lett. 112 190502 [26] Rosi S, Bernard A, Fabbri N, Fallani L, Fort C and Inguscio M 2013 Phys. Rev. A 88 021601 [27] van Frank S, Bonneau M, Schmiedmayer J, Hild S, Gross C, Cheneau M, Bloch I, Pichler T, Negretti A, Calarco T and Montangero S 2016 Sci. Rep. 6 34187 [28] Omran A, Levine H, Keesling A, et al., 2019 Science 365 570 [29] Han Z, Dong Y, Liu B, Yang X, Song S, Qiu L, Li D, Chu J, Zheng W, Xu J, Huang T, Wang Z, Yu X, Tan X, Lan D, Yung M H and Yu Y 2020 arXiv: 2004.10364 [quant-ph] [30] de Léséleuc S, Barredo D, Lienhard V, Browaeys A and Lahaye T 2018 Phys. Rev. A 97 053803 [31] Rach N, Müller M M, Calarco T and Montangero S 2015 Phys. Rev. A 92 062343 [32] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and LukinMD, 2016 Science 54 1024 [33] Barredo D, Léséleuc S d, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021 [34] Barredo D, Lienhard V, de Léséleuc S, Lahaye T and Browaeys A 2018 Nature 561 79 [35] Miroshnychenko Y, Gaëtan A, Evellin C, Grangier P, Comparat D, Pillet P, Wilk T and Browaeys A 2010 Phys. Rev. A 82 013405 [36] Reetz-Lamour M, Deiglmayr J, Amthor T and Weidemüller M 2008 New J. Physics 10 045026 [37] Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2008 Phys. Rev. Lett. 100 113003 [38] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nat. Phys. 5 115 [39] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nat. Phys. 5 110 [40] de Léséleuc S 2018 Quantum simulation of spin models with assembled arrays of Rydberg atoms (Ph.D. thesis) [41] Gujarati T P 2018 Phys. Rev. A 98 062326 [42] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes, 3rd ed. (Cambridge University Press) [43] Coppola A and Stewart B M 2014 lbfgs: Efficient l-bfgs and owl-qn optimization in r (2014), software [44] Doria P, Calarco T and Montangero S 2011 Phys. Rev. Lett. 106 190501 [45] Caneva T, Calarco T and Montangero S 2011 Phys. Rev. A 84 022326 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|