Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028201    DOI: 10.1088/1674-1056/25/2/028201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

In-situ characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high performance device

Xue-Jin Wang(王学进)1, Zheng-Fei Guo(郭正飞)1, Jing-Yu Qu(曲婧毓)1,Kun Pan(潘坤)1, Zheng Qi(祁铮)1, Hong Li(李泓)2
1. College of Science, China Agricultural University, 17 Qinghua Donglu, Haidian District, Beijing 100083, China;
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is usually sandwiched between indium tin oxide (ITO) and a functional polymer in order to improve the performance of the device. However, because of the strong acidic nature of PEDOT:PSS, the instability of ITO/PEDOT:PSS interface is also observed. The mechanism of degradation of the device remains is unclear and needs to be further studied. In this article, we investigate the in-situ electrochromism of PEDOT:PSS to disclose the cause of the degradation. X-ray photoelectron spectroscopy (XPS) was used to characterize the PEDOT:PSS films, as well as the PEDOT:PSS plus polyethylene glycol (PEG) films with and without indium ions. The electrochromic devices (ECD) based on PEDOT:PSS and PEG with and without indium ions are carried out by in-situ micro-Raman and laser reflective measurement (LRM). For comparison, ECD based on PEDOT:PSS and PEG films with LiCl, KCl, NaCl or InCl3 are also investigated by LRM. The results show that PEDOT:PSS is further reduced when negatively biased, and oxidized when positively biased. This could identify that PEDOT:PSS with indium ions from PEDOT:PSS etching ITO will lose dopants when negatively biased. The LRM shows that the device with indium ions has a stronger effect on the reduction property of PEDOT:PSS-PEG film than the device without indium ions. The contrast of the former device is 44%, that of the latter device is about 3%. The LRM also shows that the contrasts of the device based on PEDOT:PSS+PEG with LiCl, KCl, NaCl, InCl3 are 30%, 27%, 15%, and 18%, respectively.

Keywords:  PEDOT:PSS      electrochromism      electrochromic devices      interface  
Received:  17 June 2015      Revised:  09 October 2015      Accepted manuscript online: 
PACS:  82.35.Cd (Conducting polymers)  
  82.47.Tp (Electrochemical displays)  
  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

Corresponding Authors:  Xue-Jin Wang     E-mail:  xjwang@cau.edu.cn

Cite this article: 

Xue-Jin Wang(王学进), Zheng-Fei Guo(郭正飞), Jing-Yu Qu(曲婧毓),Kun Pan(潘坤), Zheng Qi(祁铮), Hong Li(李泓) In-situ characterization of electrochromism based on ITO/PEDOT:PSS towards preparation of high performance device 2016 Chin. Phys. B 25 028201

[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Holmes A B 1990 Nature 347 539
[2] Carter S A, Angelopoulos M, Karg S, Brock P J and Scott J C 1997 Appl. Phys. Lett. 70 2067
[3] Hao Z H, Hu Z Y, Zhang J J, Hao Q Y and Zhao Y 2011 Acta Phys. Sin. 60 117106 (in Chinese)
[4] Hou T, Liang C J, Zhang F J, He Z Q and Sun K 2014 Chin. Phys. Lett. 31 028801
[5] Zhuo Z L, Wang Y S, He D W and Fu M 2014 Chin. Phys. B 23 098802
[6] Kim Y, Ballantyne A M, Nelson J and Bradley D D C 2009 Organic Electronics 10 205
[7] Xing Y J, Qian M F, Guo D Z and Zhang G M 2014 Chin. Phys. B 23 038504
[8] Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S and Xia R D 2010 Chin. Phys. B 19 038601
[9] Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L H and Huang W 2015 Chin. Phys. B 24 045201
[10] Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S and Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese)
[11] de Jong M P, van Ijzendoorn L J and de Voigt M J A 2000 Nucl. Instrum. Methods Phys. Res. Sec. B Beam Interactions with Materials and Atoms 161 207
[12] Crispin X, Marciniak S, Osikowicz W, Zotti G, Van der Gon A W D, Louwet F, Fahlman M, Groenendaal L, De Schryver F and Salaneck W R 2003 J. Polym. Sci. Part B Polymer Physics 41 2561
[13] Wong K W, Yip H L, Luo Y, Wong K Y, Lau W M, Low K H, Chow H F, Gao Z Q, Yeung W L and Chang C C 2002 Appl. Phys. Lett. 80 2788
[14] Wang Y, Niu Q, Hu C, Wang W, He M, Zhang Y, Li S, Zhao L, Wang X, Xu J, Zhu Q and Chen S 2011 Opt. Lett. 36 1521
[15] Jun Ho Y, Su Jin B, Hyeong Pil K, Dong Hee N, Younggu L, Jueng Gil L and Jin J 2013 J. Mater. Chem. C 1 3250
[16] Kim J, Kanwat A, Kim H M and Jang J 2014 Phys. Status Solidi (a) n/a
[17] de Kok M M, Buechel M, Vulto S I E, van de Weijer P, Meulenkamp E A, de Winter S, Mank A J G, Vorstenbosch H J M, Weijtens C H L and van Elsbergen V 2004 Phys. Status Solidi a Appl. Res. 201 1342
[18] Sakamoto S, Okumura M, Zhao Z G and Furukawa Y 2005 Chem. Phys. Lett. 412 395
[19] Kim J S, Ho P K H, Murphy C E, Seeley A, Grizzi I, Burroughes J H and Friend R H 2004 Chem. Phys. Lett. 386 2
[20] Singh V, Arora S, Arora M, Sharma V and Tandon R P 2014 Semicond. Sci. Technol. 29 045020
[21] Garreau S, Louarn G, Buisson J P, Froyer G and Lefrant S 1999 Macro-molecules 32 6807
[22] Wang X J and Wong K Y 2006 Thin Solid Films 515 1573
[23] Sakmeche N, Aaron J J, Fall M, Aeiyach S, Jouini M, Lacroix J C and Lacaze P C 1996 Chem. Commun. No. 24 2723
[24] Wang X J, Lau W M and Wong K Y 2005 App. Phys. Lett. 87 113502
[25] Alexandridis P and Holzwarth J F 1997 Langmuir 13 6074
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[13] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!