Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020301    DOI: 10.1088/1674-1056/25/2/020301
GENERAL Prev   Next  

Weak value amplification via second-order correlated technique

Ting Cui(崔挺)1, Jing-Zheng Huang(黄靖正)1, Xiang Liu(刘翔)3, Gui-Hua Zeng(曾贵华)1,2
1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory on Navigation and Location-based Service, and Center of Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai 200240, China;
2. College of Information Science and Technology, Northwest University, Xi'an 710127, China;
3. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai Institute of Spaceflight Control Technology, Shanghai 200233, China
Abstract  We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.
Keywords:  weak measurement      two-dimensional second-order correlated function  
Received:  04 May 2015      Revised:  30 July 2015      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05),the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).
Corresponding Authors:  Jing-Zheng Huang     E-mail:

Cite this article: 

Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华) Weak value amplification via second-order correlated technique 2016 Chin. Phys. B 25 020301

[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[2] Tamir B and Cohen E 2013 Quanta 2 7
[3] Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K and Steinberg A M 2011 Science 332 1170
[4] Wiseman H M 2007 New J. Phys. 9 165
[5] Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J and Boyd R W 2014 Nat. Commun. 5 3115
[6] Pryde G J, O'Brien J L, White A G, Ralph T C and Wiseman H M 2005 Phys. Rev. Lett. 94 220405
[7] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[8] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032
[9] Zhou X X, Li X, Luo H L and Wen S C 2014 Appl. Phys. Lett. 104 051130
[10] Mitchison G 2007 Phys. Rev. A 76 062105
[11] Mitchison G 2008 Phys. Rev. A 77 052102
[12] Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
[13] Kleckner M and Ron A 2001 Phys. Rev. A 63 022110
[14] Arndt M, Nairz O, Vos-Andreae J, Keller C, Zouw G V and Zeilinger A 1999 Nature 401 680
[15] Riou J F, Guerin W, Coq Y L, Fauquembergue M, Josse V, Bouyer P and Aspect A 2006 Phys. Rev. Lett. 96 070404
[16] Cho Y W, Lim H T, Ra Y S and Kim Y H 2010 New J. Phys. 12 023036
[17] Liu R F, Zhang P, Zhou Y, Gao H and Li F L 2014 Sci. Rep. 4 4068
[18] Brown R H and Twiss R Q 1956 Nature 178 1406
[19] Ritchie N W M, Story J G and Hulet R G 1991 Phys. Rev. Lett. 66 1107
[20] Bai Y, Liu H and Han S 2007 Opt. Express 15 6062
[21] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[22] Starling D J, Dixon P B, Jordan A N and Howell J C 2009 Phys. Rev. A 80 041803
[23] Zhu X M, Zhang Y X, Pang S S, Qiao C, Liu Q H and Wu S J 2011 Phys. Rev. A 84 052111
[24] Jordan A N, Martínez-Rincón J and Howell J C 2014 Phys. Rev. X 4 011031
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[3] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[4] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[5] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[6] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[7] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[8] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[9] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[10] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[11] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[12] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[13] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[14] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[15] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
No Suggested Reading articles found!