Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120302    DOI: 10.1088/1674-1056/24/12/120302
GENERAL Prev   Next  

Dynamics of super-quantum discord and direct control with weak measurement in open quantum system

Ji Ying-Hua (嵇英华)a b
a Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
b Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China
Abstract  Super-quantum discord (SQD) with weak measurement is regarded as a kind of quantum correlation in quantum information processing. We compare and analyze the dynamical evolutions of SQD, quantum discord (QD), and quantum entanglement (QE) between two qubits in the correlated dephasing environmental model. The results indicate that (i) owing to the much smaller influence of weak measurement on the coherence of the system than that of von Neumann projection measurement, SQD with weak measurement is larger than QD, and (ii) dynamical evolution of QD or QE monotonically goes to zero with time, while SQD monotonically tends to a stable value and a freezing phenomenon occurs. The stable value after freezing mainly depends on the measurement strength and the purity of the initial quantum state.
Keywords:  super-quantum discord (SQD)      weak measurement      control  
Received:  29 April 2015      Revised:  31 July 2015      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11264015).
Corresponding Authors:  Ji Ying-Hua     E-mail:  jyh2006@jxnu.edu.cn

Cite this article: 

Ji Ying-Hua (嵇英华) Dynamics of super-quantum discord and direct control with weak measurement in open quantum system 2015 Chin. Phys. B 24 120302

[1] Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B and Walmsley I A 2012 Phys. Rev. Lett. 108 060502
[2] Ji Y H, Liu Y M and Wang Z S 2011 Chin. Phys. B 20 070304
[3] Matsuzaki Y and Nakano H 2012 Phys. Rev. B 86 184501
[4] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[5] Pryde G J, O' Brien J L, White A G, Ralph T C and Wiseman H M 2005 Phys. Rev. Lett. 94 220405
[6] Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
[7] Katz N, Neeley M, Ansmaim M, Bialczak R C, Hofheinz M, Lucero E, O'Connell A, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[8] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[9] Howell J C, Starling D J, Dixon P B, Vudyasetu P K and Jordan A N 2010 Phys. Rev. A 81 033813
[10] Lundeen J S 2011 Nature 474 188
[11] Li B, Chen L and Fan H 2014 Phys. Lett. A 378 1249
[12] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[13] Man Z X, Xia Y J and An B N 2014 Phys. Rev. A 89 013852
[14] Man Z X, Xia Y J and An B N 2012 Phys. Rev. A 86 052322
[15] Man Z X, An B N and Xia Y J 2014 Ann. Phys. 349 209
[16] Behzadi N 2013 Quantum Inf. Process. 12 21
[17] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[18] Jin J S, Yu C S, Pei P and Song H S 2010 J. Opt. Soc. Am. B 27 1799
[19] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[20] Luo S L 2008 Phys. Rev. A 77 022301
[21] Luo S L and Fu S 2011 Phys. Rev. Lett. 106 120401
[22] Luo S L 2008 Phys. Rev. A 77 042303
[23] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[24] Xiao X and Feng M 2011 Phys. Rev. A 83 054301
[25] Jin J S, Yu C S, Pei P and Song H S 2010 J. Opt. Soc. Am. B 27 1799
[26] Wang Y K, Ma T, Fan H, Fei S M and Wang Z X 2014 Quantum Inf. Process. 13 283
[27] Singh U and Pati A K 2014 Ann. Phys. 343 141
[28] Ban M 2009 Phys. Rev. A 80 032114
[29] Lingblad G 1976 Commun. Math. Phys. 48 119
[30] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[31] Brariczyk A M, Mendonya P E M F, Gilchrist A, Doherty A C and Bartlett S D 2007 Phys. Rev. A 75 012329
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[3] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[4] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[7] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[8] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[9] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[10] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[11] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[14] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[15] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
No Suggested Reading articles found!