Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020302    DOI: 10.1088/1674-1056/25/2/020302
GENERAL Prev   Next  

Quantum frequency doubling based on tripartite entanglement with cavities

Juan Guo(郭娟)1,2, Zhi-Feng Wei(魏志峰)1,2, Su-Ying Zhang(张素英)2
1. College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
2. Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
Abstract  We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network.
Keywords:  tripartite entanglement      frequency conversion      quantum communication network  
Received:  23 July 2015      Revised:  09 October 2015      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).
Corresponding Authors:  Su-Ying Zhang     E-mail:  zhangsy@sxu.edu.cn

Cite this article: 

Juan Guo(郭娟), Zhi-Feng Wei(魏志峰), Su-Ying Zhang(张素英) Quantum frequency doubling based on tripartite entanglement with cavities 2016 Chin. Phys. B 25 020302

[1] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A and Kennedy T A B 2010 Nat. Phys. 6 894
[2] Han Y, Wu C W, Wu W, Chen P X and Li C Z 2009 Chin. Phys. B 18 3215
[3] Vandevender A and Kwiat P 2004 J. Mod. Opt. 51 1433
[4] Kumar P 1990 Opt. Lett. 15 1476
[5] Wang L, Luo M X, Sun J X, Sun Y H, Chen Y, Wei X G, Kang Z H, Wang H H and Gao J Y 2015 Chin. Phys. B 24 064205
[6] Huang J and Kumar P 1992 Phys. Rev. Lett. 68 2153
[7] Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N and Zbinden H 2005 Nature 437 116
[8] Rakher M T, Ma L, Slattery O, Tang X and Srinivasan K 2010 Nat. Photon. 4 786
[9] McGuinness H J, Raymer M G, McKinstrie C J and Radic S 2010 Phys. Rev. Lett. 105 093604
[10] Bai Y F, Zhai S Q, Gao J R and Zhang J X 2011 Chin. Phys. B 20 034207
[11] Bai Y F, Zhai S Q, Gao J R and Zhang J X 2011 Chin. Phys. B 20 084207
[12] Zaske S, Lenhard A, Keler C A, Kettler J, Hepp C, Arend C, Albrecht R, Schulz W M, Jetter M, Michler P and Becher C 2012 Phys. Rev. Lett. 109 147404
[13] Ates S, Agha I, Gulinatti A, Rech I, Rakher M T, Badolato A and Srinivasan K 2012 Phys. Rev. Lett. 109 147405
[14] Tang R K, Li X J, Wu W J, Pan H F, Zeng H P and Wu E 2015 Opt. Express 23 9796
[15] Lavoie J, Donohue J M, Wright L G, Fedrizzi A and Resch K J 2013 Nat. Photon. 7 363
[16] Zhou Q, Huang K, Pan H F, Wu E and Zeng H P 2013 Appl. Phys. Lett. 102 241110
[17] Kehlet L M, Tidemand-Lichtenberg P, Dam J S and Pedersen C 2015 Opt. Lett. 40 938
[18] Vollmer C E, Baune C, Samblowski A, Eberle T, Händchen V, Fiurášek J and Schnabel R 2014 Phys. Rev. Lett. 112 073602
[19] Baune C, Gniesmer J, Schönbeck A, Vollmer C E, Fiurášek J and Schnabel R 2015 Opt. Express 23 16035
[20] Li X Y, Yang L, Ma X X, Cui L, Ou Z Y and Yu D Y 2009 Phys. Rev. A 79 033817
[21] Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P and Yao J Q 2009 Chin. Phys. B 18 4314
[22] Lloyd S, Shahriar M S, Shapiro J H and Hemmer P R 2001 Phys. Rev. Lett. 87 167903
[23] Loock P V and Braunstein S L 2000 Phys. Rev. Lett. 84 3482
[24] Braunstein S L 1998 Nature 394 47
[25] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[26] Loock P V and Furusawa A 2003 Phys. Rev. A 67 052315
[1] Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere
Xiao-Zhuo Qi(祁晓卓), and Xi-Feng Ren(任希锋). Chin. Phys. B, 2022, 31(10): 104203.
[2] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[3] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[4] β-BaB2O4 with special cut-angle applied to single crystal cascaded third-harmonic generation
Hong-Kai Ren(任宏凯), Hong-Wei Qi(亓宏伟), Zheng-Ping Wang(王正平), Zhi-Xin Wu(吴志心), Meng-Xia Wang(王梦霞), Yu-Xiang Sun(孙玉祥), Xun Sun(孙洵), Xin-Guang Xu(许心光). Chin. Phys. B, 2018, 27(11): 114202.
[5] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[6] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[7] Cascade correlation-enhanced Raman scattering in atomic vapors
Hong-Mei Ma(马红梅), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华). Chin. Phys. B, 2016, 25(12): 124206.
[8] Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave
Xiong-Hua Zheng(郑雄桦), Bao-Fu Zhang(张宝夫), Zhong-Xing Jiao(焦中兴), Biao Wang(王彪). Chin. Phys. B, 2016, 25(1): 014208.
[9] Multiple frequency conversion via atomic spin coherence of storing a light pulse
Wang Lei (王磊), Luo Meng-Xi (罗梦希), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Chen Yi (陈怡), Wei Xiao-Gang (魏小刚), Kang Zhi-Hui (康智慧), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(6): 064205.
[10] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[11] Output three-mode entanglement via coherently prepared inverted Y-type atoms
Wang Fei (王飞), Qiu Jing (邱晶). Chin. Phys. B, 2014, 23(4): 044203.
[12] Distributed wireless quantum communication networks with partially entangled pairs
Yu Xu-Tao (余旭涛), Zhang Zai-Chen (张在琛), Xu Jin (徐进). Chin. Phys. B, 2014, 23(1): 010303.
[13] Distributed wireless quantum communication networks
Yu Xu-Tao (余旭涛), Xu Jin (徐进), Zhang Zai-Chen (张在琛). Chin. Phys. B, 2013, 22(9): 090311.
[14] Noise-free frequency conversion of quantum states
Bai Yun-Fei(白云飞), Zhai Shu-Qin(翟淑琴), Gao Jiang-Rui(郜江瑞), and Zhang Jun-Xiang(张俊香). Chin. Phys. B, 2011, 20(3): 034207.
[15] Efficient collinear frequency tripling of femtosecond laser with compensation of group velocity delay
Wang Yan-Ling(王燕玲), Zhou Xu-Gui(周绪桂), Wu Hong(吴洪), and Ding Liang-En(丁良恩). Chin. Phys. B, 2009, 18(10): 4308-4313.
No Suggested Reading articles found!