Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020204    DOI: 10.1088/1674-1056/25/2/020204
GENERAL Prev   Next  

Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme

Jin-Lian Ren(任金莲) and Tao Jiang(蒋涛)
Department of Mathematics, Yangzhou University, Yangzhou 225002, China
Abstract  In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability.
Keywords:  SPH      corrected scheme      shifting particle technique      jet coiling  
Received:  06 August 2015      Revised:  21 September 2015      Accepted manuscript online: 
PACS:  02.70.-c (Computational techniques; simulations)  
  47.11.-j (Computational methods in fluid dynamics)  
  47.85.md (Polymer processing flows)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).
Corresponding Authors:  Jin-Lian Ren     E-mail:  rjl20081223@126.com

Cite this article: 

Jin-Lian Ren(任金莲) and Tao Jiang(蒋涛) Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme 2016 Chin. Phys. B 25 020204

[1] Owens R G and Phillips T N 2002 Computational Rheology (London: Imperial College Press) p. 1
[2] Cleary P W and Monaghan J J 1999 J. Comput. Phys. 148 227
[3] Feng Z, Wang X D and Ouyang J 2013 Chin. Phys. B 22 074704
[4] Chen F Z, Qiang H F and Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese)
[5] Gingold R A and Monaghan J J 1997 Mon. Not. R. Astron. Soc. 181 375
[6] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Method Fluids 20 1081
[7] Li S F and Liu W K 1999 Int. J. Numer. Method Eng. 45 251
[8] Li S F and Liu W K 1999 Int. J. Numer. Method Eng. 45 251)
[9] Morris J P, Fox P J and Zhu Y 1997 J. Comput. Phys. 136 214
[10] Fang J, Parriaux A, Rentschler M and Ancey C 2009 Appl. Numer. Math. 59 251
[11] Liu M B and Liu G R 2010 Arch. Comput. Method Eng. 17 25
[12] Hu X Y and Adams N A 2007 J. Comput. Phys. 227 264
[13] Shao S and Lo EYM 2003 Adv. Water Resour. 26 787
[14] Hu X Y and Adams N A 2006 J. Comput. Phys. 213 844
[15] Ellero M and Tanner R I 2005 J. Non-Newtonian Fluid Mech. 132 61
[16] Liu M B and Liu G R 2006 Appl. Numer. Math. 56 19
[17] Quinlan N J, Basa M and Lastiwka M 2006 Int. J. Numer. Method Eng. 66 2064
[18] Monaghan J J 2000 J. Comput. Phys. 159 290
[19] Chen J K and Beraun J E 2000 Comput. Methods Appl. Mech. Engrg. 190 225
[20] Liu M B, Xie W P and Liu G R 2005 Appl. Math. Model. 29 1252
[21] Zhang G M and Batra R C 2007 J. Comput. Phys. 222 374
[22] Zhang G M and Batra R C 2009 Comput. Mech. 43 321
[23] Bonet J and Lok T S L 1999 Comput. Methods Appl. Mech. Engrg. 180 97
[24] Oger G, Doring M, Alessandrini B and Ferrant P 2007 J. Comput. Phys. 225 1472
[25] Shadloo M S, Zainali A, Yildiz M and Suleman A 2012 Int. J. Numer. Method Eng. 89 939
[26] Basa M, Quinlan N J and Lastiwka M 2009 Int. J. Numer. Method Fluids 60 1127
[27] Ren J L, Ouyang J, Jiang T and Li Q 2012 Comput. Mech. 49 643
[28] Xu R, Stansby P and Laurence D 2009 J. Comput. Phys. 228 6703
[29] Wendland H 1995 Adv. Comput. Math. 4 389
[30] Tomé M F, Castelo A, Ferreira V G and McKee S 2008 J. Non-Newtonian Fluid Mech. 154 179
[31] Liu A W, Bornside D E, Armstrong R C and Brown R 1998 J. Non-Newtonian Fluid Mech. 77 153
[32] Ellero M andAdams N 2011 Int. J. Numer. Method Eng. 86 1027
[33] Vazquez-Quesada A, Ellero M 2012 J. Non-Newtonian Fluid Mech. 167-168 1
[34] Tomé M F, Grossi L, Castelo A, Cuminato J A, Mangiavacchi N, Ferreira V G, Sousa F S de and McKee S 2004 J. Non-Newtoian Fluid Mech. 123 85
[35] Oishi C M, Tomé M F, Cuminato J A and McKee S 2008 J. Non-Newtoian Fluid Mech. 227 7446
[1] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[5] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[6] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[7] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[8] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[9] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[10] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[11] Determine the physical mechanism and source region of beat wave modulation by changing the frequency of high-frequency waves
Zhe Guo(郭哲), Hanxian Fang(方涵先), and Farideh Honary. Chin. Phys. B, 2022, 31(2): 024103.
[12] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[13] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[14] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[15] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
No Suggested Reading articles found!