Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110301    DOI: 10.1088/1674-1056/aba5fa
GENERAL Prev   Next  

Effect of weak measurement on quantum correlations

L Jebli1, †, M Amzioug4,5, S E Ennadifi4, N Habiballah2,3, and M Nassik1$
1 EPTHE, Department of Physics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
2 Faculty of Applied Sciences, Ibn Zohr University, Ait-Melloul, Morocco
3 Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11 I-34151, Trieste, Italy
4 LHEP-MS, Department of Physics, Faculty of Science Mohammed V University, Rabat, Morocco
5 Department of Physics, Ecole Normale Sup´eieure (ENS), Mohammed V University, Rabat, Morocco
Abstract  

We investigate the local quantum uncertainty (LQU ) in weak measurement. An expression of weak LQU is explicitly determined. Also, we consider some cases of three special X states, Werner state, circulant two-qubit states, and Heisenberg model via LQU in normal and weak measurements. We find that the LQU in weak measurement is weaker than the case of strong measurement.

Keywords:  local quantum uncertainty      weak measurement      weak local quantum uncertainty  
Received:  21 April 2020      Revised:  29 June 2020      Accepted manuscript online:  15 July 2020
Corresponding Authors:  Corresponding author. E-mail: vitto.han@gmail.com   

Cite this article: 

L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$ Effect of weak measurement on quantum correlations 2020 Chin. Phys. B 29 110301

Fig. 1.  

Effect of measurement strength on LQU and WLQU for various z with x = 0.2, x = 0.8, x = 1.5.

Fig. 2.  

Weak LQU for different values of x with z = 1.

Fig. 3.  

LQU and WLQU as functions of ϵ for various values of g at x = 1.2.

Fig. 4.  

Evolution of (a) LQU and (b) WLQU for suitable parameter of B, where T = 1 for different values of J.

[1]
Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[2]
Schrodinger E 1935 Proc. Camb. Phil. Soc. 31 555
[3]
Bell J S 1964 Physics 1 195
[4]
Braginsky V B, Khalili F Y 1992 Quantum Measurement Cambridge Cambridge University Press
[5]
Wiseman H M, Milburn G J 2009 Cambridge Cambridge University Press
[6]
Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351
[7]
Oreshkov O, Brun T A 2005 Phys. Rev. Lett. 95 110409
[8]
Wiseman H M 2003 Phys. Lett. A 311 285
[9]
Mir R, Lundeen J S, Mitchell M W et al. 2007 New J. Phys. 9 287
[10]
Williams N S, Jordan A N 2008 Phys. Rev. Lett. 100 026804
[11]
Palacios-Laloy A, Mallet F, Nguyen F et al. 2010 Nature Phys. 6 442
[12]
Lundeen J S, Steinberg A M 2009 Phys. Rev. Lett. 102 020404
[13]
Hosten O, Kwiat P 2008 Science 319 787
[14]
Dixon P B, Starling D J, Jordan A N et al. 2009 Phys. Rev. Lett. 102 173601
[15]
Smith G A, Chaudhury S, Silberfarb A et al. 2004 Phys. Rev. Lett. 93 163602
[16]
Lundeen J S, Sutherland B, Patel A et al. 2011 Nature 474 188
[17]
Kim Y S et al. 2012 Nat. Phys. 8 117
[18]
Modi K, Paterek T, Son W, Vedral V 2010 Phys. Rev. Lett. 104 080501
[19]
Girolami D, Tufarelli T, Adesso G 2013 Phys. Rev. Lett. 110 240402
[20]
Wigner E P, Yanase M M 1963 Proc. Natl. Acad. Sci. USA 49 910
[21]
Sen A, Sarkar D, Bhar A 2013 Quantum Inf. Process. 12 3007
[22]
Luo S 2003 Phys. Rev. Lett. 91 180403
[23]
Bogaert P, Girolami D 2017 159 179
[24]
Luo S 2003 Proc. Amer. Math. Soc. 132 885
[25]
Jebli L, Benzimoun B, Daoud M 2017 Int. J. Quantum Inf. 14 1750020
[26]
Luo S 2008 Phys. Rev. A 77 042303
[27]
Jebli L, Benzimoun B, Daoud M 2017 Int. J. Quantum Inf. 15 1750001
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[3] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[4] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[5] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[6] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[7] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[8] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[9] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[10] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[11] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[12] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[13] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[14] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[15] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
No Suggested Reading articles found!