|
|
Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement |
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇) |
Department of Communication Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract Recently, bidirectional quantum teleportation has attracted a great deal of research attention. However, existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments. In this paper, we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger (GHZ) states based on controled-not (CNOT) operation and single-qubit measurement. Then, we generalize it to the teleportation of multi-qubit GHZ states. Further, we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel, then we obtain the fidelity of the teleportation. Finally, we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement, which shows an effective enhancement of the teleportation fidelity.
|
Received: 07 November 2016
Revised: 23 December 2016
Accepted manuscript online:
|
PACS:
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Natural Science Foundation Research Project of Shaanxi Province, China (Grant No. 2016JQ6033). |
Corresponding Authors:
Guang Yang
E-mail: sharon.yg@163.com
|
Cite this article:
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇) Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement 2017 Chin. Phys. B 26 040305
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[3] |
Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 1151
|
[4] |
Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A: Math. Theor. 40 13121
|
[5] |
Man Z X, Xia Y J and An N B 2007 Phys. Rev. A 75 052306
|
[6] |
Yan F L and Ding H W 2006 Chin. Phys. Lett. 23 17
|
[7] |
Pati A K and Agrawal P 2007 Phys. Lett. A 371 185
|
[8] |
Chen X B, Du J Z, Wen Q Y and Zhu F C 2008 Chin. Phys. B 17 771
|
[9] |
Yan F L and Yan T 2010 Chin. Sci. Bull. 55 902
|
[10] |
Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
|
[11] |
Huelga S F, Plenio M B and Vaccaro J A 2002 Phys. Rev. A 65 042316
|
[12] |
Zha X W, Zou Z C, Qi J X and Song H Y 2013 Int. J. Theor. Phys. 52 1740
|
[13] |
Li Y H and Nie L P 2013 Int. J. Theor. Phys. 52 1630
|
[14] |
An Y 2013 Int. J. Theor. Phys. 52 3870
|
[15] |
Chen Y 2014 Int. J. Theor. Phys. 53 1454
|
[16] |
Sang M H 2016 Int. J. Theor. Phys. 55 1333
|
[17] |
Li Y H 2016 Int. J. Theor. Phys. 55 3008
|
[18] |
Yang Y Q, Zha X W and Yu Y 2016 Int. J. Theor. Phys. 55 4197
|
[19] |
Binayak S C and Arpan D 2016 Int. J. Theor. Phys. 55 2275
|
[20] |
Hassanpour S and Houshmand M 2016 Quantum Inform. Process. 15 905
|
[21] |
Pan J W, Simon C, Brukner Č and Zeilinger A 2001 Nature 410 1067
|
[22] |
Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
|
[23] |
Yang G, Lian B W and Nie M 2015 Acta Phys. Sin. 64 010303 (in Chinese)
|
[24] |
Shor P W 1995 Phys. Rev. A 52 2493
|
[25] |
Wang Y J, Bai B M, Li Z, Peng J Y and Xiao H L 2012 Chin. Phys. B 21 020304
|
[26] |
Terhal B M 2015 Rev. Mod. Phys. 87 307
|
[27] |
Li C K, Nakahara M, Poon Y T, Sze N S and Tomita 2011 Phys. Rev. A 84 044301
|
[28] |
Xu G F, Zhang J, Tong D M, Sjöqvist E and Kwek L C 2012 Phys. Rev. Lett. 109 170501
|
[29] |
Liu A P, Cheng L Y, Chen L, Su S L, Wang H F and Zhang S 2014 Opt. Commun. 313 180
|
[30] |
Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
|
[31] |
Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, Connell A O, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
|
[32] |
Sun Q, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 80 033838
|
[33] |
Liao Z, Al-Amri M and Zubairy M S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145501
|
[34] |
Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103
|
[35] |
Lee J C, Jeong Y C, Kim Y S and Kim Y H 2011 Opt. Express 19 16309
|
[36] |
Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
|
[37] |
Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
|
[38] |
Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
|
[39] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|