CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire |
M Munguía-Rodríguez1, Ri Betancourt-Riera2, Re Betancourt-Riera2, R Riera1, J M Nieto Jalil3 |
1 Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-88, 83190, Hermosillo, Sonora, México; 2 Instituto Tecnólogico de Hermosillo. Avenida Tecnol ógico S/N, Col. Sahuaro, 83170, Hermosillo, Sonora, México; 3 Tecnológico de Monterrey-Campus Sonora Norte. Bulevar Enrique Mazón López No.965, 83000, Hermosillo, Sonora, México |
|
|
Abstract The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T=0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers.
|
Received: 02 June 2016
Revised: 20 July 2016
Accepted manuscript online:
|
PACS:
|
73.21.Hb
|
(Quantum wires)
|
|
78.67.Lt
|
(Quantum wires)
|
|
Corresponding Authors:
Re Betancourt-Riera
E-mail: rbriera@gmail.com
|
Cite this article:
M Munguía-Rodríguez, Ri Betancourt-Riera, Re Betancourt-Riera, R Riera, J M Nieto Jalil Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire 2016 Chin. Phys. B 25 117302
|
[1] |
Betancourt-Riera R, Riera R, Marín J L and Rosas R A 2004 Electron Raman Scattering in Nanostructures, Encyclopedia of Nanoscience and Nanotechnology (Stevenson Ranch:American Scientific Publishers) (Vol. 3) p. 101
|
[2] |
Kushwaha M S 2001 Surf. Sci. Rep. 41 1
|
[3] |
Riera R, Marín J L and Rosas R A 2001 Optical Properties and Impurity States in Nanostructured Materials, Handbook of Advanced Electronic and Photonic Devices (New York:Academic) (Vol. 6) (Chapter 6)
|
[4] |
Betancourt-Riera R, Betancourt-Riera R, Nieto J J M and Riera R 2013 Physica B 410 126
|
[5] |
Betancourt-Riera R, Betancourt-Riera R, Rosas R and Riera R 2012 J. Comput. Theor. Nanosci. 9 1
|
[6] |
Lu F, Liu C H and Guo Z L 2012 Physica B 407 165
|
[7] |
Zhai L X, Wang Y and Liu J J 2011 J. Appl. Phys. 110 043701
|
[8] |
Zhong Q H and Yi X H 2010 Superlatt. Microstruct. 47 723
|
[9] |
Zhong Q H, Liu C H, Zhang Y Q and Sun H C 2008 Phys. Lett. A 372 2103
|
[10] |
Scheinert M, Sigg H and Tsujino S 2007 Appl. Phys. Lett. 91 131108
|
[11] |
Ismailov T G and Mehdiyev B H 2006 Physica E 31 72
|
[12] |
Bergues J M, Betancourt-Riera R, Riera R and Marin J L 2000 J. Phys.:Condens. Matter 12 7983
|
[13] |
Bergues J M, Betancourt-Riera R, Marin J L and Riera R 1996 Phys. Low-Dimens. Struct. 7/8 81
|
[14] |
Riera R, Comas F, Trallero-Giner C and Pavlov S T 1988 Phys. Status Solid B 148 533
|
[15] |
Comas F, Trallero G C and Perez-Alvarez R 1986 J. Phys. C:Solid State Phys. 19 6479
|
[16] |
Trallero-Giner C, Ruf T and Cardona M 1990 Phys. Rev. B 41 3028
|
[17] |
González de la Cruz G and Trallero-Giner C 1998 Phys. Rev. B 58 9104
|
[18] |
Wang M L, Zhang C X, Wu Z L, Jing X L and Xu H J 2014 Chin. Phys. B 23 067802
|
[19] |
Jiang S M, Wu D J, Wu X W and Liu X J 2014 Chin. Phys. B 23 047807
|
[20] |
Wang M, Tian Y, Zhang J M, Guo C F, Zhang X Z and Liu Q 2014 Chin. Phys. B 23 087803
|
[21] |
Shi L K and Lou W K 2014 Chin. Phys. Lett. 31 067304
|
[22] |
Zhong Q H and Sun Y T 2011 Thin Solid Films 519 8178
|
[23] |
Wang J, Demangeot F, Pechou R, Ponchet A, Cros A and Daudin B 2012 Phys. Rev. B 85 155432
|
[24] |
Livneh T, Zhang J P, Cheng G S and Moskovits M 2006 Phys. Rev. B 74 035320
|
[25] |
Laneuville V, Demangeot F, Pchou R, Salles P, Ponchet A, Jacopin G, Rigutti L, de Luna Bugallo A, Tchernycheva M, Julien F H, March K, Zagonel L F and Songmuang R 2011 Phys. Rev. B 83 115417
|
[26] |
Liu H L, Chen C C, Chia C, Yeh C C, Chen C H, Yu M Y, Keller S and DenBaars S P 2001 Chem. Phys. Lett. 345 245
|
[27] |
Betancourt-Riera R, Betancourt-Riera R, Nieto J J M and Riera R 2015 Chin. Phys. B 24 117302
|
[28] |
Betancourt-Riera R, Nieto J J M, Riera R, Betancourt-Riera R and Rosas R 2008 J. Phys.:Condens. Matter 20 045203
|
[29] |
Ferrer-Moreno L A, Betancourt-Riera R, Betancourt-Riera R and Riera R 2015 Physica B 477 87
|
[30] |
Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York:Dover Publications)
|
[31] |
Bergues J M, Riera R, Comas F and Trallero-Giner C 1995 J. Phys.:Condens. Matter 7 7273
|
[32] |
Betancourt-Riera R, Rosas R, Marín-Enriquez I, Riera R and Marin J L 2005 J. Phys.:Condens. Matter 17 4451
|
[33] |
Betancourt-Riera R, Riera R, Rosas R and Nieto J M 2008 Physica E 40 785
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|