Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040303    DOI: 10.1088/1674-1056/28/4/040303
GENERAL Prev   Next  

Research on co-propagation of QKD and classical communication by reducing the classical optical power

Ru-Shi He(何如适)1,2, Mu-Sheng Jiang(江木生)1,2, Yang Wang(汪洋)1,2, Ya-Hui Gan(甘亚辉)1,2, Chun Zhou(周淳)1,2, Wan-Su Bao(鲍皖苏)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We investigate the crosstalk noise, especially the spontaneous Raman scattering, in the optical fiber of a co-propagation system between quantum key distribution (QKD) and classical communications. Although many methods have been proposed, such as increasing the wavelength spacing and narrowband filtering technique, to suppress Raman scattering noise, these methods greatly affect the performance of QKD. One way to solve the obstacle restricting the coexistence is to decrease the classical signal power. Based on the high gain of the gated avalanche photodiode and pulse position modulation, we demonstrate that the co-propagation system works effectively with only a small effect on long-haul fibers, which has great significance for the practical widespread commercialization of QKD.

Keywords:  QKD      co-propagation      spontaneous Raman scattering      gated APD      modulation formats  
Received:  15 October 2018      Revised:  15 January 2019      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61605248 and 61505261).

Corresponding Authors:  Mu-Sheng Jiang, Wan-Su Bao     E-mail:  jmusheng@163.com;2010thzz@sina.com

Cite this article: 

Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏) Research on co-propagation of QKD and classical communication by reducing the classical optical power 2019 Chin. Phys. B 28 040303

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computer Systems and Signal Processing (New York: IEEE) pp. 175-179
[2] Lo H K and Chau H F 1999 Science 283 2050
[3] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[5] Dynes J F, Tam W W, Plews A, Frohlich B, Sharpe A W, Lucamarini M, Yuan Z L, Radig C, Straw A, Edwards T and Shields A J 2016 Sci. Rep. 6 35149
[6] Islam N T, Lim C C, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 e1701491
[7] Ciurana A, Martinezmateo J, Peev M, Poppe A, Walenta N, Zbinden H and Martin V 2014 Opt. Express 22 1576
[8] Patel K A, Dynes J F, Lucamarini M, Choi I, Sharpe A W, Yuan Z L, Penty R V and Shields A J 2014 Appl. Phys. Lett. 104 051123
[9] Wang L J, Zou K H, Sun W, Mao Y Q, Zhu Y X, Yin H L, Chen Q, Zhao Y, Zhang F, Chen T Y and Pan J W 2017 Phys. Rev. A 95 012301
[10] Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Expres 26 6010
[11] Mlejnek M, Kaliteevskiy N A and Nolan D A 2018 arXiv: 1804.07722[quant-ph]
[12] Namekata N, Adachi S and Inoue S 1992 IEEE T. Commun. 40 810
[13] Namekata N, Inoue S and Sasamori S 2006 Opt. Express 14 10043
[14] Liang X L, Liu J H, Wang Q, Du D B, Ma J, Jin G, Chen Z B, Zhang J and Pan J W 2012 Rev. Sci. Instrum. 83 083111
[15] Feng L X, Jiang M S, Bao W S, Li H W, Zhou C and Wang Y 2018 Chin. Phys. B 27 080305
[16] Xiao D Y, Li H Z and Zhang H Y 2017 IJPE 13 409
[17] Lam A W and Hussain A M 1992 IEEE T. Commun. 40 810
[18] Kahn J M and Ho K 2004 IEEE J. Sel. Top. Quantum 10 259
[19] Mlejnek M, Kaliteevskiy N A and Nolan D A 2017 arXiv: 1712.05891[quant-ph]
[20] Choi I, Young R J and Townsend P D 2010 Opt. Expres 18 9600
[21] Ma X, Qi B, Zhao Y and Lo H 2005 Phys. Rev. A 72 012326
[1] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[2] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[3] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[4] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[5] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
No Suggested Reading articles found!