|
|
Research on co-propagation of QKD and classical communication by reducing the classical optical power |
Ru-Shi He(何如适)1,2, Mu-Sheng Jiang(江木生)1,2, Yang Wang(汪洋)1,2, Ya-Hui Gan(甘亚辉)1,2, Chun Zhou(周淳)1,2, Wan-Su Bao(鲍皖苏)1,2 |
1 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We investigate the crosstalk noise, especially the spontaneous Raman scattering, in the optical fiber of a co-propagation system between quantum key distribution (QKD) and classical communications. Although many methods have been proposed, such as increasing the wavelength spacing and narrowband filtering technique, to suppress Raman scattering noise, these methods greatly affect the performance of QKD. One way to solve the obstacle restricting the coexistence is to decrease the classical signal power. Based on the high gain of the gated avalanche photodiode and pulse position modulation, we demonstrate that the co-propagation system works effectively with only a small effect on long-haul fibers, which has great significance for the practical widespread commercialization of QKD.
|
Received: 15 October 2018
Revised: 15 January 2019
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605248 and 61505261). |
Corresponding Authors:
Mu-Sheng Jiang, Wan-Su Bao
E-mail: jmusheng@163.com;2010thzz@sina.com
|
Cite this article:
Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏) Research on co-propagation of QKD and classical communication by reducing the classical optical power 2019 Chin. Phys. B 28 040303
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computer Systems and Signal Processing (New York: IEEE) pp. 175-179
|
[2] |
Lo H K and Chau H F 1999 Science 283 2050
|
[3] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[4] |
Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
|
[5] |
Dynes J F, Tam W W, Plews A, Frohlich B, Sharpe A W, Lucamarini M, Yuan Z L, Radig C, Straw A, Edwards T and Shields A J 2016 Sci. Rep. 6 35149
|
[6] |
Islam N T, Lim C C, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 e1701491
|
[7] |
Ciurana A, Martinezmateo J, Peev M, Poppe A, Walenta N, Zbinden H and Martin V 2014 Opt. Express 22 1576
|
[8] |
Patel K A, Dynes J F, Lucamarini M, Choi I, Sharpe A W, Yuan Z L, Penty R V and Shields A J 2014 Appl. Phys. Lett. 104 051123
|
[9] |
Wang L J, Zou K H, Sun W, Mao Y Q, Zhu Y X, Yin H L, Chen Q, Zhao Y, Zhang F, Chen T Y and Pan J W 2017 Phys. Rev. A 95 012301
|
[10] |
Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Expres 26 6010
|
[11] |
Mlejnek M, Kaliteevskiy N A and Nolan D A 2018 arXiv: 1804.07722[quant-ph]
|
[12] |
Namekata N, Adachi S and Inoue S 1992 IEEE T. Commun. 40 810
|
[13] |
Namekata N, Inoue S and Sasamori S 2006 Opt. Express 14 10043
|
[14] |
Liang X L, Liu J H, Wang Q, Du D B, Ma J, Jin G, Chen Z B, Zhang J and Pan J W 2012 Rev. Sci. Instrum. 83 083111
|
[15] |
Feng L X, Jiang M S, Bao W S, Li H W, Zhou C and Wang Y 2018 Chin. Phys. B 27 080305
|
[16] |
Xiao D Y, Li H Z and Zhang H Y 2017 IJPE 13 409
|
[17] |
Lam A W and Hussain A M 1992 IEEE T. Commun. 40 810
|
[18] |
Kahn J M and Ho K 2004 IEEE J. Sel. Top. Quantum 10 259
|
[19] |
Mlejnek M, Kaliteevskiy N A and Nolan D A 2017 arXiv: 1712.05891[quant-ph]
|
[20] |
Choi I, Young R J and Townsend P D 2010 Opt. Expres 18 9600
|
[21] |
Ma X, Qi B, Zhao Y and Lo H 2005 Phys. Rev. A 72 012326
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|