Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016301    DOI: 10.1088/1674-1056/abc7a7
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Raman scattering from highly-stressed anvil diamond

Shan Liu(刘珊)1, Qiqi Tang(唐琦琪)1, Binbin Wu(吴彬彬)1, Feng Zhang(张峰)1, Jingyi Liu(刘静仪)1, Chunmei Fan(范春梅)1, and Li Lei(雷力)1,2,
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065, China
Abstract  The high-frequency edge of the first-order Raman mode of diamond reflects the stress state at the culet of anvil, and is often used for the pressure calibration in diamond anvil cell (DAC) experiments. Here we point out that the high-frequency edge of the diamond Raman phonon corresponds to the Brillouin zone (BZ) center \(\varGamma \) point as a function of pressure. The diamond Raman pressure gauge relies on the stability of crystal lattice of diamond under high stress. Upon the diamond anvil occurs failure under the uniaxial stress (197 GPa), the loss of intensity of the first-order Raman phonon and a stress-dependent broad Raman band centered at 600 cm - 1 are observed, which is associated with a strain-induced local mode corresponding to the BZ edge phonon of the L1 transverse acoustic phonon branch.
Keywords:  diamond anvil cell      Raman scattering      pressure calibration      Brillouin zone  
Received:  21 July 2020      Revised:  21 October 2020      Accepted manuscript online:  05 November 2020
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.50.-x (Vibrational states in disordered systems)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project support by the National Natural Science Foundation of China (Grant No. 11774247).
Corresponding Authors:  Corresponding author. E-mail: lei@scu.edu.cn   

Cite this article: 

Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力) Raman scattering from highly-stressed anvil diamond 2021 Chin. Phys. B 30 016301

1 Pu M F, Zhang F, Liu S, Irifune T and Lei L 2019 Chin. Phys. B 28 053102
2 Xie J, Chen S P, Tse J S, de Gironcoli S and Baroni S 1999 Phys. Rev. B 60 9444
3 Brookes C A and Brookes E J 1991 Diam. Relat. Mater. 1 13
4 Jayaraman A 1983 Rev. Mod. Phys. 55 65
5 Akahama Y and Kawamura H 2004 J. Appl. Phys. 96 3748
6 Mao H K and Hemley R J 1991 Nature 351 721
7 Yoshikawa M, Mori Y, Maegawa. M, Katagiri G, Ishida H and lshitani A 1993 Appl. Phys. Lett. 62 3114
8 Korepanov V I and Hamaguchi H O 2017 J. Raman Spectrosc. 48 842
9 Zhao J, Pu M F, Liu S, Zhang F and Lei L 2019 Mater. Res. Express 6 126502
10 Prawer S and Nemanich R J 2004 Phil. Trans. R. Soc. Lond. A 362 2537
11 Mortet V, \vZivcová Z V, Taylor A, Frank O, Hub\'ík P, Trémouilles D, Jomardf F, Barjonf J and Kavan L 2017 Carbon 115 279
12 Nemanich R J and Solin S A 1979 Phys. Rev. B 20 392
13 Lei L, Ohfuji H, Irifune T, Qin J, Zhang X and Shinmei T 2012 J. Appl. Phys. 112 043501
14 Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
15 Cerdeira F, Buchenauer C J, Pollak F H and Cardona M 1972 Phys. Rev. B 5 580
16 Grimsditch M H, Anastassakis E and Cardona M 1978 Phys. Rev. B 18 901
17 Venugopalan S and Ramdas A K 1973 Phys. Rev. B 8 717
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[7] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[8] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[9] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[10] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[11] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[12] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[13] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[14] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[15] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
No Suggested Reading articles found!