Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114401    DOI: 10.1088/1674-1056/25/11/114401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K

Qin-Yi Li(李秦宜)1,2, Masahiro Narasaki(楢崎将弘)2, Koji Takahashi(高桥厚史)2,3, Tatsuya Ikuta(生田竜也)2,3, Takashi Nishiyama(西山贵史)2,3, Xing Zhang(张兴)1
1 Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
2 Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395, Japan;
3 International Institute for Carbon Neutral Energy Research(WPI-I2 CNER), Kyushu University, Japan
Abstract  

Metallic nanofilms are important components of nanoscale electronic circuits and nanoscale sensors. The accurate characterization of the thermophysical properties of nanofilms is very important for nanoscience and nanotechnology. Currently, there is very little specific heat data for metallic nanofilms, and the existing measurements indicate distinct differences according to the nanofilm size. The present work reports the specific heats of 40-nm-thick suspended platinum nanofilms at 80-380 K and ~5×10-4 Pa using the 3ω method. Over 80-380 K, the specific heats of the Pt nanofilms range from 166-304 J/(kg·K), which are 1.65-2.60 times the bulk values, indicating significant size effects. These results are useful for both scientific research in nanoscale thermophysics and evaluating the transient thermal response of nanoscale devices.

Keywords:  suspended platinum nanofilms      specific heat      size effect      3&omega      method  
Received:  27 April 2016      Revised:  11 July 2016      Accepted manuscript online: 
PACS:  68.60.-p (Physical properties of thin films, nonelectronic)  
  65.40.Ba (Heat capacity)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51327001 and 51636002), and partially supported by CREST, JST, and JSPS KAKENHI (Grant Nos. 16H04280, 26289047, 16K14174, and 16K06126).

Corresponding Authors:  Xing Zhang     E-mail:  x-zhang@tsinghua.edu.cn

Cite this article: 

Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴) Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K 2016 Chin. Phys. B 25 114401

[1] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K and Ikuta T 2005 Phys. Rev. Lett. 95 065502
[2] Hirotani J, Ikuta T, Nishiyama T and Takahashi K 2011 Nanotechnology 22 315702
[3] Hayashi H, Takahashi K, Ikuta T, Nishiyama T, Takata Y and Zhang X 2014 Appl. Phys. Lett. 104 113112
[4] Ma W G, Miao T T, Zhang X, Takahashi K, Ikuta T, Zhang B P and Ge Z 2016 Nanoscale 8 2704
[5] Zheng J L, Wingert M C, Dechaumphai E and Chen R K 2013 Rev. Sci. Instrum. 84 114901
[6] Wingert M C, Kwon S, Hu M, Poulikakos D, Xiang J and Chen R K 2015 Nano Lett. 15 2605
[7] Zhang X, Xie H Q, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Appl. Phys. Lett. 86 171912
[8] Zhang Q G, Cao B Y, Zhang X, Fujii M and Takahashi K 2006 Phys. Rev. B 74 134109
[9] Ma W G and Zhang X 2013 Int. J. Heat Mass Transf. 58 639
[10] Dames C 2006 Thermal Properties of Nanowires and Nanotubes:Modeling and Experiments (Ph. D. Dissertation) (Cambridge:Massachusetts Institute of Technology)
[11] Chen G 2005 Nanoscale Energy Transport and Conversion:A Parallel Treatment of Electrons, Molecules, Phonons and Photons (Oxford:Oxford University Press Inc)
[12] Yu J, Tang Z A, Zhang F T, Wei G F and Wang L D 2005 Chin. Phys. Lett. 22 2429
[13] Yu J 2005 Fabrication of Microcalorimeter and Investigation on the Specific Heat of Micro/nanometer Thin Films (Ph. D. Dissertation) (Dalian:Dalian University of Technology) (in Chinese)
[14] Yu J, Tang Z A, Zhang F T, Ding H and Huang Z 2010 ASME J. Heat Transf. 132 012403
[15] Lugo J M, Rejon V and Oliva A I 2015 ASME J. Heat Transf. 137 051601
[16] Lugo J M, Ayora C, Rejon V and Oliva A I 2015 Thin Solid Films 585 24
[17] Queen D R and Hellman F 2009 Rev. Sci. Instrum. 80 063901
[18] Lu L, Yi W and Zhang D L 2001 Rev. Sci. Instrum. 72 2996
[19] Dames C and Chen G 2005 Rev. Sci. Instrum. 76 124902
[20] Wang J L, Gu M, Zhang X and Wu J P 2009 Rev. Sci. Instrum. 80 076107
[21] Wang J L 2010 Methods and Applications for Measuring the Thermophysical Properties of Micro/nanowires (Ph. D. Dissertation) (Beijing:Tsinghua University) (in Chinese)
[22] Yaws C L 2012 Yaws' Critical Property Data for Chemical Engineers and Chemists (New York:Knovel)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[7] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[8] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[11] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[12] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[13] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[14] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[15] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
No Suggested Reading articles found!