Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114501    DOI: 10.1088/1674-1056/25/11/114501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm

Shixing Liu(刘世兴)1, Chang Liu(刘畅)1, Wei Hua(花巍)2, Yongxin Guo(郭永新)3
1 College of Physics, Liaoning University, Shenyang 110036, China;
2 College of Physics and Technology, Shenyang Normal University, Shenyang 110034, China;
3 Eastern Liaoning University, Dandong 118001, China
Abstract  By using the discrete variational method, we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework, and construct a numerical method of generalized Birkhoffian equations called a self-adjoint-preserving algorithm. Numerical results show that it is reasonable to study the nonholonomic system by the structure-preserving algorithm in the generalized Birkhoffian framework.
Keywords:  nonholonomic system      generalized Birkhoffian system      conditions of self-adjointness      self-adjoint-preserving algorithm  
Received:  30 April 2016      Revised:  03 June 2016      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  45.10.-b (Computational methods in classical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472124, 11572145, 11202090, and 11301350), the Doctor Research Start-up Fund of Liaoning Province, China (Grant No. 20141050), the China Postdoctoral Science Foundation (Grant No. 2014M560203), and the General Science and Technology Research Plans of Liaoning Educational Bureau, China (Grant No. L2013005).
Corresponding Authors:  Chang Liu     E-mail:  liuchang101618@126.com

Cite this article: 

Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新) Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm 2016 Chin. Phys. B 25 114501

[1] Guo Y X, Liu S X and Liu C 2009 Phys. Lett. A 373 3915
[2] Bloch A M, Krishnaprasad P S, Marsden J E and Murray R 1996 Arch. Rat. Mech. Anal. 136 21
[3] Mei F X 2000 Appl. Mech. Rev. 53 283
[4] Sarlet W, Cantrijn F and Saunders D J 1995 J. Phys. A-Math. Gen. 28 3253
[5] van der Schaft A J and Maschke B M 1994 Rep. Math. Phys. 34 225
[6] Ferrario C and Passerini A 1992 J. Geom.Phys. 9 121
[7] Arnold V I 1988 Dynamical Systems Ⅲ (Berlin:Spriner-Verlag)
[8] Cardin F and Favretti M 1996 J. Geom.Phys. 18 295
[9] Ostrowski J and Burdick J 1998 Int. J. Robot. Res. 17 683
[10] Marsden J E and West M 2001 Acta Numer. 10 357
[11] Koiller J 1992 Arch. Rat. Mech. Anal. 118 113
[12] Li Z and Canny J F 1993 Nonholonomic Motion Planning (Boston:Klumer Academic Publishers)
[13] Guo Y X, Luo S K and Mei F X 2004 Adv. Mech. 34 477(in Chinese)
[14] Guo Y X, Zhao Z and Liu S X2006 Acta Phys. Sin. 54 3838(in Chinese)
[15] Bloch A M, Baillieul J, Crouch P and Marsden J E 2003 Nonholonomic Mechanics and Control (London:Springer)
[16] Cortés J 2002 Geometric, Control, and Numerical Aspects of Nonholonomic Systems (Springer)
[17] Krontiris A, Louis S, Kostas E and Bekris K E 2010 Lect. Notes Comput. Sci. 6459 121
[18] Fernandez O E and Bloch A M 2011 J. Math. Phys. 52 012901
[19] Cortes J and Martinez S 2001 Nonlinearity 14 1365
[20] McLachlan R and Perlmutter M 2006 J. Nonlinear Sci. 16 283
[21] Kobilarov M, Marsden J E and Sukhatme G S 2010 Discrete Cont. Dyn. S 3 61
[22] Mestdag T, Bloch A M and Fernandez O E 2009 Proceedings of the 8th International Congress of Theoretical and Applied Mechanics, Brussels, Belgium
[23] Kobilarov M, de Diego D M and Ferraro S 2010 arXiv:1002.4733[math-ph]
[24] Liu S X, Guo Y X and Liu C 2008 Acta Phys. Sin. 57 1311(in Chinese)
[25] Ostrowsky J 1998 Rep. Math. Phys. 42 185
[26] Liu S X, Liu C and Guo Y X 2011 Acta Phys. Sin. 60 034501(in Chinese)
[27] Guo Y X, Liu C and Liu S X 2010 Commun. Math. 18 21
[28] Mei F X and Wu H B 2015 Chin. Phys. B 21 104502
[29] Santilli R M 1978 Foundations of Theoretical Mechanics I (New York:Springer-Verlag)
[30] Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York:Springer-Verlag)
[31] Hairer E, Lubich C and Wanner G 2000 Geometric Numerical Integration:Structure-Preserving Algorithms for Ordinary Differential Equations (New York:Springer-Verlag)
[1] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[2] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[3] Bifurcation for the generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(5): 054501.
[4] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[5] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[6] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[7] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[8] Lie–Mei symmetry and conserved quantities of the Rosenberg problem
Liu Xiao-Wei(刘晓巍) and Li Yuan-Cheng(李元成). Chin. Phys. B, 2011, 20(7): 070204.
[9] Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2011, 20(5): 054501.
[10] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An(姜文安), Li Zhuang-Jun(李状君), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(3): 030202.
[11] Type of integral and reduction for a generalized Birkhoffian system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2011, 20(10): 104501.
[12] Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems
Liu Chang(刘畅), Chang Peng(常鹏), Liu Shi-Xing(刘世兴), and Guo Yong-Xin(郭永新). Chin. Phys. B, 2010, 19(3): 030302.
[13] Symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2010, 19(3): 030303.
[14] Symmetry and conserved quantities of discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2010, 19(12): 124601.
[15] Lagrange equations of nonholonomic systems with fractional derivatives
Zhou Sha(周莎), Fu Jing-Li(傅景礼), and Liu Yong-Song(刘咏松). Chin. Phys. B, 2010, 19(12): 120301.
No Suggested Reading articles found!