Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107403    DOI: 10.1088/1674-1056/25/10/107403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy

Ya-Nan Cao(曹亚南)1,2, Gui-Shi Wang(王贵师)1, Tu Tan(谈图)1, Ting-Dong Cai(蔡廷栋)3, Kun Liu(刘锟)1, Lei Wang(汪磊)1, Gong-Dong Zhu(朱公栋)1, Jiao-Xu Mei(梅教旭)1
1 Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230031, China;
3 College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract  Quantitative analysis of ammonium salts in the process of coking industrial liquid waste treatment is successfully performed based on a compact Raman spectrometer combined with partial least square (PLS) method. Two main components (NH4SCN and (NH4)2S2O3) of the industrial mixture are investigated. During the data preprocessing, wavelet denoising and an internal standard normalization method are employed to improve the predicting ability of PLS models. Moreover, the PLS models with different characteristic bands for each component are studied to choose a best resolution. The internal and external calibration results of the validated model show a mass percentage error below 1% for both components. Finally, the repeatabilities and reproducibilities of Raman and reference titration measurements are also discussed.
Keywords:  Raman spectroscopy      wavelet denoising      partial least square regression      ammonium salts  
Received:  04 May 2016      Revised:  26 May 2016      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41405022 and 61475068).
Corresponding Authors:  Gui-Shi Wang, Tu Tan     E-mail:  gswang@aiofm.ac.cn;tantu@aiofm.ac.cn

Cite this article: 

Ya-Nan Cao(曹亚南), Gui-Shi Wang(王贵师), Tu Tan(谈图), Ting-Dong Cai(蔡廷栋), Kun Liu(刘锟), Lei Wang(汪磊), Gong-Dong Zhu(朱公栋), Jiao-Xu Mei(梅教旭) Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy 2016 Chin. Phys. B 25 107403

[1] Cheng S 2003 Environmental Science and Pollution Research 10 192
[2] Wang M, Webber M, Finlayson B and Barnett J 2008 Journal of Environmental Management 86 648
[3] Pal P and Kumar R 2014 Separation & Purification Reviews 43 89
[4] Du J B, Tang Y L and Long Z W 2012 Acta Phys. Sin. 61 153101 (in Chinese)
[5] Yin N, Yang G, Zhong Z X and Xing W H 2011 Desalination 268 233
[6] Das R S and Agrawal Y K 2011 Vibrational Spectroscopy 57 163
[7] Clarke R H, Londhe S and Premasiri W R 1999 Journal of Raman Spectroscopy 30 827
[8] Premasiri W R, Clarke R H, Londhe S and Womble M E 2001 Journal of Raman Spectroscopy 32 919
[9] Malka I, Petrushansky A, Rosenwaks S and Bar I 2013 Appl. Phys. B 113 511
[10] Sowoidnich K and Kronfeldt H D 2012 Appl. Phys. B 108 975
[11] Breitenbach J, Schrof W and Neumann J 1999 Pharmaceutical Research 16 1109
[12] Strachan C J, Rades T, Gordon K C and Rantanen J 2007 Journal of Pharmacy and Pharmacology 59 179
[13] Ianoul A, Coleman T and Asher S A 2002 Anal. Chem. 74 1458
[14] Kudelski A 2008 Talanta 76 1
[15] Dunk R M, Peltzer E T, Walz P M and Brewer P G 2005 Environmental Science & Technology 39 9630
[16] Baek S J, Park A, Kim J, Shen A and Hu J 2009 Chemometrics and Intelligent Laboratory Systems 98 24
[17] Chen D, Chen Z and Grant E 2011 Anal. Bioanal. Chem. 400 625
[18] Hu Y, Jiang T, Shen A, Li W, Wang X and Hu J 2007 Chemometrics and Intelligent Laboratory Systems 85 94
[19] Li Z, Zhan D J, Wang J J, Huang J, Xu Q S, Zhang Z M, Zheng Y B, Liang Y Z and Wang H 2013 Analyst 138 448
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[7] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[10] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[11] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[12] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[13] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[14] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[15] Spin-phonon coupling in van der Waals antiferromagnet VOCl
Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲). Chin. Phys. B, 2021, 30(10): 107502.
No Suggested Reading articles found!