Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 106802    DOI: 10.1088/1674-1056/25/10/106802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics

Shu-Yuan Zhang(张淑媛), Wen Liu(刘雯), Zhao-Feng Li(李兆峰), Min Liu(刘敏), Yu-Sheng Liu(刘雨生), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华)
Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation. With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 mA/cm2 is obtained. Moreover, by adding an Ag mirror under the whole structure, a short-circuit current density of 37.9 mA/cm2 is attained. It is understood that the optical absorption enhancement mainly results from three aspects. First, the silicon nanocone holes provide a highly efficient antireflection effect. Second, after breaking the geometric symmetry, the slanted silicon nanocone hole supports more resonant absorption modes than vertical structures. Third, the Fabry-Perot resonance enhances the light absorption after adding an Ag mirror.
Keywords:  photovoltaic      light-trapping structure      simulation  
Received:  11 May 2016      Revised:  17 June 2016      Accepted manuscript online: 
PACS:  68.55.jm (Texture)  
  88.30.gg (Design and simulation)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274066, 61474115, and 61504138) and the National High Technology Research and Development Program of China (Grant No. 2014AA032602).
Corresponding Authors:  Xiao-Dong Wang     E-mail:  xdwang@semi.ac.cn

Cite this article: 

Shu-Yuan Zhang(张淑媛), Wen Liu(刘雯), Zhao-Feng Li(李兆峰), Min Liu(刘敏), Yu-Sheng Liu(刘雨生), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华) Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics 2016 Chin. Phys. B 25 106802

[1] Green M A 2004 Solar Energy 76 3
[2] Shi Y P, Wang X D, Liu W, Yang T S, Ma J and Yang F H 2014 Appl. Phys. Express 7 062301
[3] Shi Y P, Wang X D, Liu W, Yang T S and Yang F H 2014 J. Opt. 16 075706
[4] Han S E and Chen G 2010 Nano. Lett. 10 1012
[5] Chen Y K, Han W H and Yang F H 2013 Opt. Lett. 38 3973
[6] Lin C, Martinez L J and Povinelli M L 2013 Opt. Express 21 Suppl 5 A872
[7] Hong L, Rusli, Wang X C, Zheng H Y, Wang H and Yu H Y 2014 J. Appl. Phys. 116 194302
[8] Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H and Cui Y 2009 Nano. Lett. 9 279
[9] Garnett E and Yang P D 2010 Nano. Lett. 10 1082
[10] Garnett E C, Brongersma M L, Cui Y and McGehee M D 2011 Ann. Rev. Mater. Res. 41 269
[11] Yue H H, Jia R, Chen C, Ding W C, Wu D Q and Liu X Y 2011 J. Semicond. 32 8
[12] Qiu K, Zuo Y H, Zhou T W, Liu Z, Zheng J, Li C B and Cheng B W 2015 J. Semicond. 36 10
[13] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[14] Beck F J, Mokkapati S, Polman A and Catchpole K R 2010 Appl. Phys. Lett. 96 033113
[15] Liu W, Wang X D, Li Y Q, Geng Z X, Yang F H and Li J M 2011 Sol. Energy. Mater. Sol. Cells 95 693
[16] Xu R, Wang X D, Liu W, Song L, Xu X N, Ji A, Yang F H and Li J M 2012 Jpn. J. Appl. Phys. 51 042301
[17] Shi Y P, Wang X D, Liu W, Yang T S, Xu R and Yang F H 2013 J. Appl. Phys. 113 176101
[18] Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
[19] Chen L, Wang Q K, Shen X Q, Chen W, Huang K and Liu D M 2015 Chin. Phys. B 24 104201
[20] Jeong S, Garnett E C, Wang S, Yu Z F, Fan S H, Brongersma M L, McGehee M D and Cui Y 2012 Nano. Lett. 12 2971
[21] Wang B M and Leu P W 2012 Nanotechnology 23 194003
[22] Wang K X Z, Yu Z F, Liu V, Cui Y and Fan S H 2012 Nano. Lett. 12 1616
[23] Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z and Ho K M 2015 Sci. Rep. 5 7810
[24] Du Q G, Kam C H, Demir H V, Yu H Y and Sun X W 2011 Opt. Lett. 36 1713
[25] Wang W, Zhang J S, Zhang Y, Xie Z and Qin G G 2013 J. Phys. D: Appl. Phys. 46 195106
[26] Xie Z, Wang W, Qin L X, Xu W J and Qin G G 2013 Opt. Express 21 18043
[27] Lin Q F, Leung S F, Lu L F, Chen X Y, Chen Z, Tang H N, Su W J, Li D D and Fan Z Y 2014 ACS Nano 8 6484
[28] Zhang D, Ren W N, Zhu Z C, Zhang H F, Liu B, Shi W Z, Qin X M and Cheng C W 2015 Nanoscale Res. Lett. 10 9
[29] Zhang X, Yu Y G, Xi J T, Liu T L and Sun X H 2015 J. Opt. 17 015901
[30] Zhang X, Yu Y G, Xi J T, Wang Y L and Sun X H 2015 J. Opt. 17 075901
[31] Eyderman S, John S and Deinega A 2013 J. Appl. Phys. 113 154315
[32] Moulin E, Paetzold U W, Siekmann H, Worbs J, Bauer A and Carius R 2011 Energy Procedia 10 106
[33] Moulin E, Paetzold U W, Bittkau K, Owen J, Kirchhoff J, Bauer A and Carius R 2013 Prog. Photovolt: Res. Appl. 21 1236
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[7] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[8] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[12] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[13] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!