CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics |
Shu-Yuan Zhang(张淑媛), Wen Liu(刘雯), Zhao-Feng Li(李兆峰), Min Liu(刘敏), Yu-Sheng Liu(刘雨生), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华) |
Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation. With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 mA/cm2 is obtained. Moreover, by adding an Ag mirror under the whole structure, a short-circuit current density of 37.9 mA/cm2 is attained. It is understood that the optical absorption enhancement mainly results from three aspects. First, the silicon nanocone holes provide a highly efficient antireflection effect. Second, after breaking the geometric symmetry, the slanted silicon nanocone hole supports more resonant absorption modes than vertical structures. Third, the Fabry-Perot resonance enhances the light absorption after adding an Ag mirror.
|
Received: 11 May 2016
Revised: 17 June 2016
Accepted manuscript online:
|
PACS:
|
68.55.jm
|
(Texture)
|
|
88.30.gg
|
(Design and simulation)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274066, 61474115, and 61504138) and the National High Technology Research and Development Program of China (Grant No. 2014AA032602). |
Corresponding Authors:
Xiao-Dong Wang
E-mail: xdwang@semi.ac.cn
|
Cite this article:
Shu-Yuan Zhang(张淑媛), Wen Liu(刘雯), Zhao-Feng Li(李兆峰), Min Liu(刘敏), Yu-Sheng Liu(刘雨生), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华) Optical absorption enhancement in slanted silicon nanocone hole arrays for solar photovoltaics 2016 Chin. Phys. B 25 106802
|
[1] |
Green M A 2004 Solar Energy 76 3
|
[2] |
Shi Y P, Wang X D, Liu W, Yang T S, Ma J and Yang F H 2014 Appl. Phys. Express 7 062301
|
[3] |
Shi Y P, Wang X D, Liu W, Yang T S and Yang F H 2014 J. Opt. 16 075706
|
[4] |
Han S E and Chen G 2010 Nano. Lett. 10 1012
|
[5] |
Chen Y K, Han W H and Yang F H 2013 Opt. Lett. 38 3973
|
[6] |
Lin C, Martinez L J and Povinelli M L 2013 Opt. Express 21 Suppl 5 A872
|
[7] |
Hong L, Rusli, Wang X C, Zheng H Y, Wang H and Yu H Y 2014 J. Appl. Phys. 116 194302
|
[8] |
Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H and Cui Y 2009 Nano. Lett. 9 279
|
[9] |
Garnett E and Yang P D 2010 Nano. Lett. 10 1082
|
[10] |
Garnett E C, Brongersma M L, Cui Y and McGehee M D 2011 Ann. Rev. Mater. Res. 41 269
|
[11] |
Yue H H, Jia R, Chen C, Ding W C, Wu D Q and Liu X Y 2011 J. Semicond. 32 8
|
[12] |
Qiu K, Zuo Y H, Zhou T W, Liu Z, Zheng J, Li C B and Cheng B W 2015 J. Semicond. 36 10
|
[13] |
Atwater H A and Polman A 2010 Nat. Mater. 9 205
|
[14] |
Beck F J, Mokkapati S, Polman A and Catchpole K R 2010 Appl. Phys. Lett. 96 033113
|
[15] |
Liu W, Wang X D, Li Y Q, Geng Z X, Yang F H and Li J M 2011 Sol. Energy. Mater. Sol. Cells 95 693
|
[16] |
Xu R, Wang X D, Liu W, Song L, Xu X N, Ji A, Yang F H and Li J M 2012 Jpn. J. Appl. Phys. 51 042301
|
[17] |
Shi Y P, Wang X D, Liu W, Yang T S, Xu R and Yang F H 2013 J. Appl. Phys. 113 176101
|
[18] |
Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 045202
|
[19] |
Chen L, Wang Q K, Shen X Q, Chen W, Huang K and Liu D M 2015 Chin. Phys. B 24 104201
|
[20] |
Jeong S, Garnett E C, Wang S, Yu Z F, Fan S H, Brongersma M L, McGehee M D and Cui Y 2012 Nano. Lett. 12 2971
|
[21] |
Wang B M and Leu P W 2012 Nanotechnology 23 194003
|
[22] |
Wang K X Z, Yu Z F, Liu V, Cui Y and Fan S H 2012 Nano. Lett. 12 1616
|
[23] |
Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z and Ho K M 2015 Sci. Rep. 5 7810
|
[24] |
Du Q G, Kam C H, Demir H V, Yu H Y and Sun X W 2011 Opt. Lett. 36 1713
|
[25] |
Wang W, Zhang J S, Zhang Y, Xie Z and Qin G G 2013 J. Phys. D: Appl. Phys. 46 195106
|
[26] |
Xie Z, Wang W, Qin L X, Xu W J and Qin G G 2013 Opt. Express 21 18043
|
[27] |
Lin Q F, Leung S F, Lu L F, Chen X Y, Chen Z, Tang H N, Su W J, Li D D and Fan Z Y 2014 ACS Nano 8 6484
|
[28] |
Zhang D, Ren W N, Zhu Z C, Zhang H F, Liu B, Shi W Z, Qin X M and Cheng C W 2015 Nanoscale Res. Lett. 10 9
|
[29] |
Zhang X, Yu Y G, Xi J T, Liu T L and Sun X H 2015 J. Opt. 17 015901
|
[30] |
Zhang X, Yu Y G, Xi J T, Wang Y L and Sun X H 2015 J. Opt. 17 075901
|
[31] |
Eyderman S, John S and Deinega A 2013 J. Appl. Phys. 113 154315
|
[32] |
Moulin E, Paetzold U W, Siekmann H, Worbs J, Bauer A and Carius R 2011 Energy Procedia 10 106
|
[33] |
Moulin E, Paetzold U W, Bittkau K, Owen J, Kirchhoff J, Bauer A and Carius R 2013 Prog. Photovolt: Res. Appl. 21 1236
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|