Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 025202    DOI: 10.1088/1674-1056/ac6b23

Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas

Wen-Hao Lin(林文浩)1, Ji-Quan Li(李继全)1,†, J Garcia2, and S Mazzi3
1 Southwestern Institute of Physics, Chengdu 610041, China;
2 CEA, IRFM, 13108, Saint-Paul-lez-Durance, France;
3 EPFL, Swiss Plasma Center, Lausanne, Switzerland
Abstract  The turbulence characteristics of plasmas with internal transport barriers in the HL-2A tokamak are analyzed by means of linear gyrokinetic simulations. It is found that turbulence is dominated by the ion temperature gradient (ITG) mode together with large-scale modes characterized by high-frequency electromagnetic fluctuation, which are destabilized by the steep ion temperature gradient in the weak magnetic shear regime. Comparison with solutions of analytical dispersion relations shows that their linear features match well with the beta-induced Alfvén eigenmode branch of the shear Alfvénic spectrum. It is further clarified that the large population of fast ions in these plasmas plays a stabilization role through the dilution mechanism in high-n ITG mode regimes.
Keywords:  low-n Alfvénic modes      fast ions      gyrokinetic simulation      tokamak  
Received:  15 February 2022      Revised:  23 April 2022      Accepted manuscript online:  28 April 2022
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.55.Pi (Fusion products effects (e.g., alpha-particles, etc.), fast particle effects)  
  52.65.Tt (Gyrofluid and gyrokinetic simulations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0301201) and also partially by the National Natural Science Foundation of China (Grant Nos. U1967206 and 11775069).
Corresponding Authors:  Ji-Quan Li     E-mail:

Cite this article: 

Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas 2023 Chin. Phys. B 32 025202

[1] Mantica P, Strintzi D, Tala T, Giroud C, Johnson T, Leggate H, Lerche E, Loarer T, Peeters A G and Salmi A 2009 Phys. Rev. Lett. 102 175002
[2] Mantica P, Angioni C, Challis C, Colyer G, Frassinetti L, Hawkes N, Johnson T, Tsalas M, Devries P C and Weiland J 2011 Phys. Rev. Lett. 107 135004
[3] Citrin J, Jenko F, Mantica P, Told D, Bourdelle C, Garcia J, Haverkort J W, Hogeweij G M D, Johnson T and Pueschel M J 2013 Phys. Rev. Lett. 111 155001
[4] Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D R, Hogeweij G M D, Johnson T, Pueschel M J, Schneider M and JET-EFDA Contributors 2014 Plasma Phys. Control. Fusion 57 014032
[5] Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P and JET Contributors 2015 Nucl. Fusion 55 053007
[6] Garcia J, Grler T and Jenko F 2018 Phys. Plasmas 25 055902
[7] Siena A Di, Görler T, Doerk H, Poli E and Bilato R 2018 Nucl. Fusion 58 054002
[8] Jenko F, Dorland W, Kotschenreuther M and Rogersa B N 2000 Phys. Plasmas 7 1904
[9] Nocente M, Kazakov Ye O, Garcia J, et al. 2020 Nucl. Fusion 60 124006
[10] Kazakov Ye O, Ongena J, Wright J C, et al. 2021 Phys. Plasmas 28 020501
[11] Mazzi S, Garcia J, Zarzoso D, Kazakov Ye O, Ongena J, Görler T, Nocente M, Dreval M, Stancar M, Szepesi G, Eriksson J, Sahlberg A and Benkadda S 2020 arXiv: 2010.07977
[12] Yu D L, Wei Y L, Liu L, et al. 2016 Nucl. Fusion 56 056003
[13] Zonca F, Chen L and Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011
[14] Görler T, Lapillonne X, Brunner S, Dannert T, Jenko F, Merz F and Told D 2012 Journal of Computational Physics 230 7053
[15] Shi Z B, Jiang M, Huang X L, Zhong W L, Chen W, Che Y L, Liu Z T, Ding X T, Yang Q W and Duan X R 2014 Rev. Sci. Instrum. 85 023510
[16] Wei Y L, Yu D L, Liu L, Ida K, Hellermann M V, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R and Liu Y 2014 Rev. Sci. Instrum. 85 103503
[17] Pankin A, McCune D, Andre R, Bateman G and Kritz A 2004 Computer Physics Communications 159 157
[18] Connor J W, Hastie R J and Taylor J B 1978 Phys. Rev. Lett. 40 396
[19] Zonca F and Chen L 2014 Phys. Plasmas 21 072120
[20] Manickam J and Pomphrey N 1987 Nucl. Fusion 27 1461
[21] Kim J Y, Horton W and Dong J Q 1993 Phys. Fluids B 5 4030
[22] Merz F 2008 Gyrokinetic Simulation of Multimode Plasma Turbulence (Ph.D. Dissertation) (University of Münster)
[23] Told D 2012 Gyrokinetic Microturbulence in Transport Barriers (Ph.D. Dissertation) (University of Ulm)
[1] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[2] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[3] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[4] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[5] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[6] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[7] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[8] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[9] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[10] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[11] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[12] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[13] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[14] Simulations of the L–H transition dynamics with different heat and particle sources
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国). Chin. Phys. B, 2015, 24(11): 115204.
[15] Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma
Shi Bing-Ren (石秉仁). Chin. Phys. B, 2014, 23(1): 015202.
No Suggested Reading articles found!