Special Issue:
TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
|
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics |
Prev
Next
|
|
|
Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level |
Li Deng(邓礼) and Hai Xu(徐海) |
Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China |
|
|
Abstract Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-β nanostructures through self-assembly. The self-assembly process and the resultant peptide nanostructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical. β -sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β -sheet locking, lateral stacking, and morphological transformation. Detailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies.
|
Received: 30 April 2015
Revised: 03 July 2015
Accepted manuscript online:
|
PACS:
|
87.14.em
|
(Fibrils (amyloids, collagen, etc.))
|
|
87.14.ef
|
(Peptides)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.10.Pq
|
(Elasticity theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21373270 and 11504431) and the Fundamental Research Funds for Central Universities of China (Grant No. 15CX02025A). |
Corresponding Authors:
Hai Xu
E-mail: xuh@upc.edu.cn
|
Cite this article:
Li Deng(邓礼) and Hai Xu(徐海) Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level 2016 Chin. Phys. B 25 018701
|
[1] |
Caughey B and Lansbury P T 2003 Annu. Rev. Neurosci. 26 267
|
[2] |
Dobson C M 2003 Nature 426 884
|
[3] |
Knowles T P, Fitzpatrick A W, Meehan S, Mott H R, Vendruscolo M, Dobson C M and Welland M E 2007 Science 318 1900
|
[4] |
Chiti F and Dobson C M 2009 Nat. Chem. Biol. 5 15
|
[5] |
Ghadiri M R, Granja J R, Milligan R A, McRee D E and Khazanovich N 1993 Nature 366 324
|
[6] |
Nyrkova I, Semenov A N, Aggeli A and Boden N 2000 Eur. Phys. J. B 17 481
|
[7] |
Deechongkit S, Powers E T, You S L and Kelly JW2005 J. Am. Chem. Soc. 127 8562
|
[8] |
Zubarev E R, Sone E D and Stupp S I 2006 Chem.-Eur. J. 12 7313
|
[9] |
Scanlon S and Aggeli A 2008 Nano Today 3 22
|
[10] |
Cui H, Muraoka T, Cheetham A G and Stupp S I 2009 Nano Lett. 9 945
|
[11] |
Pashuck E T and Stupp S I 2010 J. Am. Chem. Soc. 132 8819
|
[12] |
Adamcik J, Castelletto V, Bolisetty S, Hamley I W and Mezzenga R 2011 Angew. Chem. Int. Edit. 50 5495
|
[13] |
Morris K L, Zibaee S, Chen L, Goedert M, Sikorski P and Serpell L C 2013 Angew. Chem. Int. Edit. 52 2279
|
[14] |
Zhang S G 2003 Nat. Biotechnol. 21 1171
|
[15] |
Ulijn R V and Smith A M 2008 Chem. Soc. Rev. 37 664
|
[16] |
Zhao X B, Pan F, Xu H, Yaseen M, Shan H H, Hauser C A E, Zhang S G and Lu J R 2010 Chem. Soc. Rev. 39 3480
|
[17] |
Dong H, Paramonov S E, Aulisa L, Bakota E L and Hartgerink J D 2007 J. Am. Chem. Soc. 129 12468
|
[18] |
Xu H,Wang J, Han S Y,Wang J Q, Yu D Y, Zhang H Y, Xia D H, Zhao X B, Waigh T A and Lu J R 2009 Langmuir 25 4115
|
[19] |
Han S Y, Cao S S, Wang Y M, Wang J Q, Xia D H, Xu H, Zhao X B and Lu J R 2011 Chem.-Eur. J. 17 13095
|
[20] |
Liang Y, Pingali S V, Jogalekar A S, Snyder J P, Thiyagarajan P and Lynn D G 2008 Biochemistry-us. 47 10018
|
[21] |
Mehta A K, Lu K, Childers W S, Liang Y, Dublin S N, Dong J J, Snyder J P, Pingali S V, Thiyagarajan P and Lynn D G 2008 J. Am. Chem. Soc. 130 9829
|
[22] |
Castelletto V, Hamley I W, Harris P J F, Olsson U and Spencer N 2009 J. Phys. Chem. B 113 9978
|
[23] |
Castelletto V, Hamley IW, Cenker C and Olsson U 2010 J. Phys. Chem. B 114 8002
|
[24] |
Adamcik J and Mezzenga R 2011 Soft Matter 7 5437
|
[25] |
Jordens S, Adamcik J, Amar-Yuli I and Mezzenga R 2011 Biomacromolecules 12 187
|
[26] |
Aggeli A, Nyrkova I A, Bell M, Harding R, Carrick L, McLeish T C B, Semenov A N and Boden N 2001 Proc. Natl. Acad. Sci. USA 98 11857
|
[27] |
Whitesides G M and Grzybowski B 2002 Science 295 2418
|
[28] |
O'Leary L E R, Fallas J A, Bakota E L, Kang M K and Hartgerink J D 2011 Nat. Chem. 3 821
|
[29] |
Fitzpatrick A W P, Debelouchina G T, Bayro M J, Clare D K, Caporini M A, Bajaj V S, Jaroniec C P, Wang L C, Ladizhansky V, Muller S A, MacPhee C E, Waudby C A, Mott H R, De Simone A, Knowles T P J, Saibil H R, Vendruscolo M, Orlova E V, Griffin R G and Dobson C M 2013 Proc. Natl. Acad. Sci. USA 110 5468
|
[30] |
Zhou P, Deng L, Wang Y T, Lu J R and Xu H 2015 J. Colloid Interf. Sci. (in press)
|
[31] |
Nelson R, Sawaya M R, Balbirnie M, Madsen A O, Riekel C, Grothe R and Eisenberg D 2005 Nature 435 773
|
[32] |
Sawaya M R, Sambashivan S, Nelson R, Ivanova M I, Sievers S A, Apostol M I, Thompson M J, Balbirnie M, Wiltzius J J W, McFarlane H T, Madsen A O, Riekel C and Eisenberg D 2007 Nature 447 453
|
[33] |
Sunde M, Serpell L, Bartlam M, Fraser P, Pepys M and Blake C 1997 J. Mol. Biol. 273 729
|
[34] |
Castelletto V, Nutt D R, Hamley IW, Bucak S, Cenker C and Olsson U 2010 Chem. Commun. 46 6270
|
[35] |
Mo Y X, Lu Y, Wei G H and Derreumaux P 2009 J. Chem. Phys. 130 125101
|
[36] |
Bellesia G and Shea J E 2009 Biophys. J. 96 875
|
[37] |
Deng L, Zhou P, Zhao Y R, Wang Y T and Xu H 2014 J. Phys. Chem. B 118 12501
|
[38] |
Xu H, Wang Y M, Ge X, Han S Y, Wang S J, Zhou P, Shan H H, Zhao X B and Lu J A R 2010 Chem. Mater. 22 5165
|
[39] |
Caplan M R, Schwartzfarb E M, Zhang S G, Kamm R D and Lauffenburger D A 2002 Biomaterials 23 219
|
[40] |
Zhao Y R, Wang J Q, Deng L, Zhou P, Wang S J, Wang Y T, Xu H and Lu J R 2013 Langmuir 29 13457
|
[41] |
Straub J E and Thirumalai D 2011 Annu. Rev. Phys. Chem. 62 437
|
[42] |
Auer S, Dobson C M, Vendruscolo M and Maritan A 2008 Phys. Rev. Lett. 101 258101
|
[43] |
Zhang J N and Muthukumar M 2009 J. Chem. Phys. 130 035102
|
[44] |
Esler W P, Stimson E, Jennings J M, Vinters H V, Ghilardi J R, Lee J P, Mantyh P W and Maggio J E 2000 Biochemistry-us. 39 6288
|
[45] |
Massi F and Straub J E 2001 Proteins 42 217
|
[46] |
Massi F, Peng J W, Lee J P and Straub J E 2001 Biophys. J. 80 31
|
[47] |
Klimov D K and Thirumalai D 2003 Structure 11 295
|
[48] |
Hills R D and Brooks C L 2007 J. Mol. Biol. 368 894
|
[49] |
Nguyen P H, Li MS, Stock G, Straub J E and Thirumalai D 2007 Proc. Natl. Acad. Sci. USA 104 111
|
[50] |
Takeda T and Klimov D K 2009 Biophys. J. 96 442
|
[51] |
Kirschner D A, Inouye H, Duffy L K, Sinclair A, Lind M and Selkoe D J 1987 Proc. Natl. Acad. Sci. USA 84 6953
|
[52] |
Garzon-Rodrigues W, Sepulveda-Becerra M, Milton S and Glabe C G 1997 J. Biol. Chem. 272 21037
|
[53] |
Lu K, Jacob J, Thiyagarajan P, Conticello V P and Lynn D G 2003 J. Am. Chem. Soc. 125 6391
|
[54] |
Bowerman C J, Ryan D M, Nissan D A and Nilsson B L 2009 Molecular Biosystems 5 1058
|
[55] |
Lee N R, Bowerman C J and Nilsson B L 2013 Biomacromolecules 14 3267
|
[56] |
Zheng J, Ma B Y, Tsai C J and Nussinov R 2006 Biophys. J. 91 824
|
[57] |
Lewandowski J R, van der Wel P C A, Rigney M, Grigorieff N and Griffin R G 2011 J. Am. Chem. Soc. 133 14686
|
[58] |
Hamley I W, Nutt D R, Brown G D, Miravet J F, Escuder B and Rodriguez-Llansola F 2010 J. Phys. Chem. B 114 940
|
[59] |
Nyrkova I, Semenov A N, Aggeli A, Bell M, Boden N and McLeish T C 2000 Eur. Phys. J. B 17 499
|
[60] |
Assenza S, Adamcik J, Mezzenga R and Rios P 2014 Phys. Rev. Lett. 113 268103
|
[61] |
Yan X H, Cui Y, He Q, Wang K W, Li J B, Mu W H, Wang B L and Ou-Yang Z C 2008 Chem. Eur. J. 14 5974
|
[62] |
Marrink S J and Tieleman D P 2013 Chem. Soc. Rev. 42 6801
|
[63] |
Guo C, Luo Y, Zhou R H and Wei G H 2012 ACS Nano 6 3907
|
[64] |
Ziserman L, Lee H Y, Raghavan S R, Mor A and Danino D 2011 J. Am. Chem. Soc. 133 2511
|
[65] |
Lee H Y, Oh H, Lee J H and Raghavan S R 2012 J. Am. Chem. Soc. 134 14375
|
[66] |
Selinger J V, Spector M S and Schnur J M 2001 J. Phys. Chem. B 105 7157
|
[67] |
Ou-Yang Z C and Liu J 1990 Phys. Rev. Lett. 65 1679
|
[68] |
Selinger R L B, Selinger J V, Malanoski A P and Schnur J M 2004 Phys. Rev. Lett. 93 158103
|
[69] |
Sawa Y, Ye F F, Urayama K, Takigawa T, Gimenez-Pinto V, Selinger R L B and Selinger J V 2011 Proc. Natl. Acad. Sci. USA 108 6364
|
[70] |
Ziserman L, Mor A, Harries D and Danino D 2011 Phys. Rev. Lett. 106 238105
|
[71] |
Guo Q, Mehta A K, Grover M A, ChenW, Lynn D G and Chen Z 2014 Appl. Phys. Lett. 104 211901
|
[72] |
Ghafouri R and Bruinsma R 2005 Phys. Rev. Lett. 94 138101
|
[73] |
Armon S, Efrati E, Kupferman R and Sharon E 2011 Science 333 1726
|
[74] |
Childers W S, Anthony N R, Mehta A K, Berland K M and Lynn D G 2012 Langmuir 28 6386
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|