Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir1, †, Ziaul Raza Khan2, T Alshahrani3, Kamlesh V. Chandekar4, M Aslam Manthrammel1, Ashwani Kumar5, and S AlFaify1$
1 Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia 2 Department of Physics, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia 3 Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia 4 Department of Physics, Rayat Shikshan Sanstha’s, Karmaveer Bhaurao Patil College, Vashi, Navi Mumbai 400703, India 5 Department of Physics, IK Gujral Punjab Technical University, Jalandhar 144603, India
This work reports the cost-effective growth of Mg:PbI2 nanostructures with 0, 1, 2.5 and 5.0 wt.% Mg doping concentrations. Structural, vibrational, morphological properties are analyzed using x-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). XRD and Raman studies confirm the monophasic hexagonal system of Mg:PbI2, and no additional impurity peaks are detected. The Scherrer formula is used to determine sizes of crystallites to be in the range of 47–52 nm. EDX/SEM e-mapping analyses confirm the incorporation of Mg in PbI2 matrix and its uniform distribution throughout the sample. The hexagonal nanosheet- and nanoplate-like morphologies are detected in SEM images for pure and Mg-doped PbI2. An optical band gap of nanostructures is obtained from Tauc’s relation to be in the range 3.0–3.25 eV. Dielectric and electrical properties are found in significant enhancement as Mg doping in PbI2 matrix, also the conduction mechanism is discussed.
Received: 23 May 2020
Revised: 07 July 2020
Accepted manuscript online: 15 July 2020
Fund: the Deanship of Scientific Research at King Khalid University (Grant No. R.G.P1/207/41), the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program, and Deanship of Research, University of Hail.
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$ Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology 2020 Chin. Phys. B 29 116102
Fig. 1.
(a) As-recorded XRD patterns, (b) close view of the (001) peak, (c)–(f) Rietveld refined XRD patterns for pure and Mg-doped PbI2 nanostructures.
Sample
POWDERX software
Rietveld refined
D101/nm
δ101/10−4 nm−2
ε101/10−3
Pb1–xMgxI2
a/Å
c/Å
V/Å3
a/Å
c/Å
V/Å3
JCPSD#7-0235
4.5570
6.9790
125.5100
–
–
–
–
–
–
x = 0.0 wt.%
4.5572
6.9786
125.5160
4.5556
6.9767
125.3918
51.23
3.81
3.02
x = 1.0 wt.%
4.5577
6.9778
125.5310
4.5578
6.9812
125.5946
49.25
4.12
3.15
x = 2.5 wt.%
4.5574
6.9803
125.5605
4.5550
6.9769
125.3650
48.20
4.30
3.21
x = 5.0 wt.%
4.5590
6.9822
125.6817
4.5553
6.9782
125.4019
47.47
4.44
3.27
Table 1.
Refined structural constraints for all Mg:PbI2 by POWDERX software and Rietveld refinement processes.
Fig. 2.
FT-Raman spectra for pure and Mg-doped PbI2.
Fig. 3.
EDX spectra with composition and (b) SEM e-mapping images for 2.5 wt.% Mg:PbI2.
Fig. 4.
SEM micrographs for pure and Mg-doped PbI2.
Fig. 5.
(a) Absorbance plot and (b) Tauc’s plot for Mg:PbI2.
Fig. 6.
Graphics for (a) ε′ vs ln ω, (b) ε″ vs ln ω, and (c) ωac vs ln ω for all Mg:PbI2 samples.
[1]
Kojima A Teshima K Shirai Y Miyasaka T 2009 J. Am. Chem. Soc.131 6050 DOI: 10.1021/ja809598r
[2]
Jiang Q Zhao Y Zhang X Yang X Chen Y Chu Z Ye Q Li X Yin Z You J 2019 Nat. Photon.13 460 DOI: 10.1038/s41566-019-0398-2
[3]
Sun H Zhao B Zhu X Zhu S Yang D Wangyang P Gao X 2018 Appl. Surf. Sci.427 1146 DOI: 10.1016/j.apsusc.2017.08.144
[4]
Shah K Street R Dmitriyev Y Bennett P Cirignano L Klugerman M Squillante M Entine G 2001 Nucl. Instrum. Methods A458 140 DOI: 10.1016/S0168-9002(00)00857-3
[5]
Mo J Zhang C Chang J Yang H Xi H Chen D Lin Z Lu G Zhang J Hao Y 2017 J. Mater. Chem. A5 13032 DOI: 10.1039/C7TA01517H
Zhang J Huang Y Tan Z Li T Zhang Y Jia K Lin L Sun L Chen X Li Z Tan C Zhang J Zheng L Wu Y Deng B Chen Z Liu Z Peng H 2018 Adv. Mater.30 1803194 DOI: 10.1002/adma.201803194
[8]
Shah K S Olschner F Moy L P Bennett P Misra M Zhang J Squillante M R Lund J C 1996 Nucl. Instrum. Methods A380 266 DOI: 10.1016/S0168-9002(96)00346-4
[9]
Al-Daraghmeh T M Saleh M H Ahmad M J A Bulos B N Shehadeh K M Jafar M M A G 2018 J. Electron. Mater.47 1806 DOI: 10.1007/s11664-017-5953-3
Chen Y Zhang L Zhang Y Gao H Yan H 2018 RSC Adv.8 10489 DOI: 10.1039/C8RA00384J
[16]
Gujar T P Unger T Schönleber A Fried M Panzer F van Smaalen S Köhler A Thelakkat M 2018 Phys. Chem. Chem. Phys.20 605 DOI: 10.1039/C7CP04749E
[17]
Kim H S Lee C R Im J H Lee K B Moehl T Marchioro A Moon S J Humphry-Baker R Yum J H Moser J E 2012 Sci. Rep.2 591 DOI: 10.1038/srep00591
[18]
Xiao M Huang F Huang W Dkhissi Y Zhu Y Etheridge J Gray-Weale A Bach U Cheng Y B Spiccia L 2014 Angew. Chem. Int. Ed.53 9898 DOI: 10.1002/anie.201405334
[19]
Duong T Mulmudi H K Shen H Wu Y Barugkin C Mayon Y O Nguyen H T Macdonald D Peng J Lockrey M 2016 Nano Energy30 330 DOI: 10.1016/j.nanoen.2016.10.027
Al-Douri Y Hashim U Bouhemadou A Ameri M 2015 Nanoelectron. Optoelectron.10 705 DOI: 10.1166/jno.2015.1811
[27]
Mohammed S I Al-Douri Y 2014 Advanced Materials Research Durnten-Zurich Trans Tech Publications Ltd 925 164 168 DOI: 10.4028/www.scientific.net/AMR.925.164
[28]
Shkir M AlFaify S Yahia I S Hamdy M S Ganesh V Algarni H 2017 J. Nanopart. Res.19 328 DOI: 10.1007/s11051-017-4020-6
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.