Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018501    DOI: 10.1088/1674-1056/25/1/018501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap

Mohsen Mahmoudi1, Zahra Ahangari2, Morteza Fathipour1
1. Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran;
2. Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University, Tehran, Iran
Abstract  

The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain magnitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.

Keywords:  silicene      double-gate field-effect-transistor      non-equilibrium Green'      s function      tight binding  
Received:  30 July 2015      Revised:  14 September 2015      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  73.61.Ga (II-VI semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  31.15.aq (Strongly correlated electron systems: generalized tight-binding method)  
Corresponding Authors:  Mohsen Mahmoudi     E-mail:  mhsn.mahmoudi@ut.ac.ir

Cite this article: 

Mohsen Mahmoudi, Zahra Ahangari, Morteza Fathipour Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap 2016 Chin. Phys. B 25 018501

[1] Guzmán-Verri G G and Voon L L Y 2007 Phys. Rev. B 76 075131
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Cahangirov S, Topsakal M, Aktrk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[4] Ezawa M 2012 New. J. Phys. 14 033003
[5] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[6] Huang B, Deng H X, Lee H, Yoon M, Sumpter B G, Liu F, Sean C S and Wei S H 2014 Phys. Rev. X 4 021029
[7] Topsakal M and Ciraci S 2010 Phys. Rev. B 81 024107
[8] Qin R, Wang C H, Zhu W and Zhang Y 2012 AIP. Adv. 2 022159
[9] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nature 10 227
[10] Chaudhry A and Kumar M J 2004 IEEE Trans. Dev. Mater. Rel. 4 99
[11] 2013 International Technology Roadmap for Semiconductors [Online] http://www.itrs.net
[12] Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y and Wong H S P 2001 Proc. IEEE 89 259
[13] Song Y L, Zhang Y, Zhang J M and Lu D B 2010 Appl. Surf. Sci. 256 6313
[14] van den Broek B, Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2014 Phys. Status Solidi RRL 8 931
[15] Kaneko S, Tsuchiya H, Kamakura Y, Mori N and Ogawa M 2014 Appl. Phys. Express 7 035102
[16] Sadeghi H 2014 J. Nanosci. Nanotechnol. 14 4178
[17] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press)
[18] Fiori G and Iannaccone G 2005 J. Comput. Electron. 4 63
[19] Yoon Y, Fiori G, Hong S, Iannaccone G and Guo J 2008 IEEE Trans. Electron. Dev. 55 2314
[20] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[21] Kliros G S 2013 Microelectron. Eng. 112 220
[22] Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 81 195120
[23] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[24] Kang J, He Y, Zhang J, Yu X, Guan X and Yu Z 2010 Appl. Phys. Lett. 96 252105
[25] Harrison W A 1999 Elementary Electronic Structure (World Scientific)
[26] Sancho M L, Sancho J L, Sancho J L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851
[27] Fisher D S and Lee P A 1981 Phys. Rev. B 23 6851
[28] Schwierz F 2010 Nature 5 487
[29] Pati S K, Koley K, Dutta A, Mohankumar N and Sarkar C K 2014 Microelectron. Reliab. 54 1137
[30] Khaledian M, Ismail R, Saeidmanesh M, Ahmadi M T and Akbari E 2014 J. Nanomater 101
[31] Ouyang Y, Yoon Y and Guo J 2007 IEEE Trans. Electron. Dev. 54 2223
[32] Taur Y and Ning T H 2009 Fundamentals of Modern VLSI Devices (Cambridge: Cambridge University Press)
[33] Fiori G and Iannaccone G 2007 IEEE Electron. Dev. Lett. 28 760
[34] Wang J, Zhao R, Yang M, Liu Z and Liu Z 2013 J. Chem. Phys. 138 084701
[35] Zhu W, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402
[36] Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M and Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153
[37] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[3] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[4] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[5] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[6] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[7] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[8] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[9] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[10] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[11] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[12] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[13] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[14] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[15] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
No Suggested Reading articles found!