Special Issue:
TOPICAL REVIEW — Fundamental research under high magnetic fields
|
TOPICAL REVIEW—Fundamental research under high magnetic fields |
Prev
Next
|
|
|
Lorentz transmission electron microscopy for magnetic skyrmions imaging |
Jin Tang(汤进)1, Lingyao Kong(孔令尧)2, Weiwei Wang(王伟伟)3, Haifeng Du(杜海峰)1,3, Mingliang Tian(田明亮)1,2 |
1 High Magnetic Field Laboratory, Chinese Academy of Sciences(CAS), Hefei 230031, China; 2 School of Physics and Materials Science, Anhui University, Hefei 230601, China; 3 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China |
|
|
Abstract Magnetic skyrmions have interesting properties, including their small size, topological stability, and extremely low threshold current for current-driven motion. Therefore, they are regarded as promising candidates for next-generation magnetic memory devices. Lorentz transmission electron microscopy (TEM) has an ultrahigh magnetic domain resolution (~2 nm), it is thus an ideal method for direct real-space imaging of fine magnetic configurations of ultra-small skyrmions. In this paper, we describe the basic principles of Lorentz-TEM and off-axis electron holography and review recent experimental developments in magnetic skyrmion imaging using these two methods.
|
Received: 17 May 2019
Revised: 29 June 2019
Accepted manuscript online:
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.75.Fk
|
(Domain structures in nanoparticles)
|
|
Fund: Project supported by the National Key Research and Development Program of China, (Grant No. 2017YFA0303201), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH009), the National Natural Science Foundation of China (Grant Nos. 51622105 and 11804343), the President Foundation of Hefei Institutes of Physical Science, CAS (Grant No. YZJJ2018QN15), and the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology, (Grant No. 2016FXCX001). |
Corresponding Authors:
Weiwei Wang
E-mail: wangweiwei@ahu.edu.cn
|
Cite this article:
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮) Lorentz transmission electron microscopy for magnetic skyrmions imaging 2019 Chin. Phys. B 28 087503
|
[40] |
McCartney M R and Smith D J 2007 Ann. Rev. Mater. Res. 37 729
|
[1] |
Skyrme T H R 1962 Nucl. Phys. 31 556
|
[41] |
Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
|
[2] |
Bogdanov A N and Yablonskii D 1989 Zh. Eksp. Teor. Fiz. 95 178
|
[42] |
Jin C, Li Z A, Kovacs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M and Dunin-Borkowski R E 2017 Nat. Commun. 8 15569
|
[3] |
Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
|
[43] |
Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
|
[4] |
Wang S, Tang J, Wang W, Kong L, Tian M and Du H 2019 J. Low Temp. Phys.
|
[44] |
Rybakov F, Borisov A and Bogdanov A 2013 Phys. Rev. B 87 094424
|
[5] |
Liu Y Z and Zang J 2018 Acta Phys. Sin. 67 131201 (in Chinese)
|
[45] |
Butenko A B, Leonov A A, Rößler U K and Bogdanov A N 2010 Phys. Rev. B 82 052403
|
[6] |
Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
|
[46] |
Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blugel S and Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451
|
[7] |
Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
|
[47] |
Rybakov F N, Borisov A B, Blügel S and Kiselev N S 2015 Phys. Rev. Lett. 115 117201
|
[8] |
Rossler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
|
[9] |
Morikawa D, Shibata K, Kanazawa N, Yu X Z and Tokura Y 2013 Phys. Rev. B 88 024408
|
[10] |
Tokunaga Y, Yu X Z, White J S, Ronnow H M, Morikawa D, Taguchi Y and Tokura Y 2015 Nat. Commun. 6 7638
|
[11] |
Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R and Zhang Y 2016 Proc. Natl. Acad. Sci. 113 4918
|
[12] |
Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blugel S 2011 Nat. Phys. 7 713
|
[13] |
Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W and Ding H F 2014 Phys. Rev. B 90 174411
|
[14] |
Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P and Duine R 2010 Science 330 1648
|
[15] |
Du H, DeGrave J P, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y and Jin S 2014 Nano Lett. 14 2026
|
[16] |
Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
|
[17] |
Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G E 2017 Nat. Phys. 13 162
|
[18] |
Hrabec A, Sampaio J, Belmeguenai M, Gross I, Weil R, Cherif S M, Stashkevich A, Jacques V, Thiaville A and Rohart S 2017 Nat. Commun. 8 15765
|
[19] |
Woo S, Litzius K, Kruger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weig, M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M and Beach G S D 2016 Nat. Mater. 15 501
|
[20] |
Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y and Che R 2017 Nano Lett. 17 2921
|
[21] |
Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B and Zhang Z 2017 Adv. Mater. 29 1701144
|
[22] |
Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Chen X, Zang J, Zhang Y and Tian M 2015 Nat. Commun. 6 8504
|
[23] |
Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nano 8 839
|
[24] |
Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
|
[25] |
Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
|
[26] |
Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H and Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
|
[27] |
Kanazawa N, Seki S and Tokura Y 2017 Adv. Mater. 29 1603227
|
[28] |
Jin C M and Du H F 2015 Chin. Phys. B 24 128501
|
[29] |
Ngo D T and Kuhn L T 2016 Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 045001
|
[30] |
Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A and Tokura Y 2014 Nat. Nanotechnol. 9 337
|
[31] |
Tanase M and Petford-Long A K 2009 Microsc. Res. Tech. 72 187
|
[32] |
Marcinkowski M J and Poliak R M 1963 Philos. Mag. 8 1023
|
[33] |
Paganin D and Nugent K A 1998 Phys. Rev. Lett. 80 2586
|
[34] |
Bajt S, Barty A, Nugent K, McCartney M, Wall M and Paganin D 2000 Ultramicroscopy 83 67
|
[35] |
De Graef M and Zhu Y 2001 J. Appl. Phys. 89 7177
|
[36] |
Ishizuka K and Allman B 2005 J. Electron. Microsc. 54 191
|
[37] |
Lalieu M L M, Helgers P L J and Koopmans B 2017 Phys. Rev. B 96 014417
|
[38] |
McCartney M R, Agarwal N, Chung S, Cullen D A, Han M G, He K, Li L, Wang H, Zhou L and Smith D J 2010 Ultramicroscopy 110 375
|
[39] |
Dunin-Borkowski R E, McCartney M R and Smith D J 2004 Encyclopedia Nanoscience Nanotechnology 3 41
|
[40] |
McCartney M R and Smith D J 2007 Ann. Rev. Mater. Res. 37 729
|
[41] |
Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
|
[42] |
Jin C, Li Z A, Kovacs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M and Dunin-Borkowski R E 2017 Nat. Commun. 8 15569
|
[43] |
Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
|
[44] |
Rybakov F, Borisov A and Bogdanov A 2013 Phys. Rev. B 87 094424
|
[45] |
Butenko A B, Leonov A A, Rößler U K and Bogdanov A N 2010 Phys. Rev. B 82 052403
|
[46] |
Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blugel S and Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451
|
[47] |
Rybakov F N, Borisov A B, Blügel S and Kiselev N S 2015 Phys. Rev. Lett. 115 117201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|