Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087503    DOI: 10.1088/1674-1056/28/8/087503
Special Issue: TOPICAL REVIEW — Fundamental research under high magnetic fields
TOPICAL REVIEW—Fundamental research under high magnetic fields Prev   Next  

Lorentz transmission electron microscopy for magnetic skyrmions imaging

Jin Tang(汤进)1, Lingyao Kong(孔令尧)2, Weiwei Wang(王伟伟)3, Haifeng Du(杜海峰)1,3, Mingliang Tian(田明亮)1,2
1 High Magnetic Field Laboratory, Chinese Academy of Sciences(CAS), Hefei 230031, China;
2 School of Physics and Materials Science, Anhui University, Hefei 230601, China;
3 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  Magnetic skyrmions have interesting properties, including their small size, topological stability, and extremely low threshold current for current-driven motion. Therefore, they are regarded as promising candidates for next-generation magnetic memory devices. Lorentz transmission electron microscopy (TEM) has an ultrahigh magnetic domain resolution (~2 nm), it is thus an ideal method for direct real-space imaging of fine magnetic configurations of ultra-small skyrmions. In this paper, we describe the basic principles of Lorentz-TEM and off-axis electron holography and review recent experimental developments in magnetic skyrmion imaging using these two methods.
Keywords:  magnetic skyrmion      Lorentz transmission microscope      nanostructures  
Received:  17 May 2019      Revised:  29 June 2019      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Fk (Domain structures in nanoparticles)  
Fund: Project supported by the National Key Research and Development Program of China, (Grant No. 2017YFA0303201), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH009), the National Natural Science Foundation of China (Grant Nos. 51622105 and 11804343), the President Foundation of Hefei Institutes of Physical Science, CAS (Grant No. YZJJ2018QN15), and the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology, (Grant No. 2016FXCX001).
Corresponding Authors:  Weiwei Wang     E-mail:  wangweiwei@ahu.edu.cn

Cite this article: 

Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮) Lorentz transmission electron microscopy for magnetic skyrmions imaging 2019 Chin. Phys. B 28 087503

[40] McCartney M R and Smith D J 2007 Ann. Rev. Mater. Res. 37 729
[1] Skyrme T H R 1962 Nucl. Phys. 31 556
[41] Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
[2] Bogdanov A N and Yablonskii D 1989 Zh. Eksp. Teor. Fiz. 95 178
[42] Jin C, Li Z A, Kovacs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M and Dunin-Borkowski R E 2017 Nat. Commun. 8 15569
[3] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[43] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[4] Wang S, Tang J, Wang W, Kong L, Tian M and Du H 2019 J. Low Temp. Phys.
[44] Rybakov F, Borisov A and Bogdanov A 2013 Phys. Rev. B 87 094424
[5] Liu Y Z and Zang J 2018 Acta Phys. Sin. 67 131201 (in Chinese)
[45] Butenko A B, Leonov A A, Rößler U K and Bogdanov A N 2010 Phys. Rev. B 82 052403
[6] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[46] Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blugel S and Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451
[7] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[47] Rybakov F N, Borisov A B, Blügel S and Kiselev N S 2015 Phys. Rev. Lett. 115 117201
[8] Rossler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[9] Morikawa D, Shibata K, Kanazawa N, Yu X Z and Tokura Y 2013 Phys. Rev. B 88 024408
[10] Tokunaga Y, Yu X Z, White J S, Ronnow H M, Morikawa D, Taguchi Y and Tokura Y 2015 Nat. Commun. 6 7638
[11] Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R and Zhang Y 2016 Proc. Natl. Acad. Sci. 113 4918
[12] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blugel S 2011 Nat. Phys. 7 713
[13] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W and Ding H F 2014 Phys. Rev. B 90 174411
[14] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P and Duine R 2010 Science 330 1648
[15] Du H, DeGrave J P, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y and Jin S 2014 Nano Lett. 14 2026
[16] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[17] Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G E 2017 Nat. Phys. 13 162
[18] Hrabec A, Sampaio J, Belmeguenai M, Gross I, Weil R, Cherif S M, Stashkevich A, Jacques V, Thiaville A and Rohart S 2017 Nat. Commun. 8 15765
[19] Woo S, Litzius K, Kruger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weig, M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M and Beach G S D 2016 Nat. Mater. 15 501
[20] Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y and Che R 2017 Nano Lett. 17 2921
[21] Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B and Zhang Z 2017 Adv. Mater. 29 1701144
[22] Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Chen X, Zang J, Zhang Y and Tian M 2015 Nat. Commun. 6 8504
[23] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nano 8 839
[24] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[25] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[26] Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H and Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[27] Kanazawa N, Seki S and Tokura Y 2017 Adv. Mater. 29 1603227
[28] Jin C M and Du H F 2015 Chin. Phys. B 24 128501
[29] Ngo D T and Kuhn L T 2016 Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 045001
[30] Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A and Tokura Y 2014 Nat. Nanotechnol. 9 337
[31] Tanase M and Petford-Long A K 2009 Microsc. Res. Tech. 72 187
[32] Marcinkowski M J and Poliak R M 1963 Philos. Mag. 8 1023
[33] Paganin D and Nugent K A 1998 Phys. Rev. Lett. 80 2586
[34] Bajt S, Barty A, Nugent K, McCartney M, Wall M and Paganin D 2000 Ultramicroscopy 83 67
[35] De Graef M and Zhu Y 2001 J. Appl. Phys. 89 7177
[36] Ishizuka K and Allman B 2005 J. Electron. Microsc. 54 191
[37] Lalieu M L M, Helgers P L J and Koopmans B 2017 Phys. Rev. B 96 014417
[38] McCartney M R, Agarwal N, Chung S, Cullen D A, Han M G, He K, Li L, Wang H, Zhou L and Smith D J 2010 Ultramicroscopy 110 375
[39] Dunin-Borkowski R E, McCartney M R and Smith D J 2004 Encyclopedia Nanoscience Nanotechnology 3 41
[40] McCartney M R and Smith D J 2007 Ann. Rev. Mater. Res. 37 729
[41] Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
[42] Jin C, Li Z A, Kovacs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M and Dunin-Borkowski R E 2017 Nat. Commun. 8 15569
[43] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[44] Rybakov F, Borisov A and Bogdanov A 2013 Phys. Rev. B 87 094424
[45] Butenko A B, Leonov A A, Rößler U K and Bogdanov A N 2010 Phys. Rev. B 82 052403
[46] Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blugel S and Dunin-Borkowski R E 2018 Nat. Nanotechnol. 13 451
[47] Rybakov F N, Borisov A B, Blügel S and Kiselev N S 2015 Phys. Rev. Lett. 115 117201
[1] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[2] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[5] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[6] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[7] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[8] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[9] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[10] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[11] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[12] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[13] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[14] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[15] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
No Suggested Reading articles found!