ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna |
Shangtong Jia(贾尚曈)1, Zhi Li(李智)1,†, and Jianjun Chen(陈建军)1,2,3,4,5,‡ |
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 2 Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 4 Frontiers Science Center for Nano-optoelectronics&Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; 5 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China |
|
|
Abstract Bright single-photon emitters (SPEs) are fundamental components in many quantum applications. However, it is difficult to simultaneously get large Purcell enhancements and quantum yields in metallic nanostructures because of the huge losses in the metallic nanostructures. Herein, we propose to combine an ultrathin metallic bowtie antenna with a silicon antenna above a metallic substrate to simultaneously get large Purcell enhancements, quantum yields, and collection efficiencies. As a result, the brightness of SPEs in the hybrid nanostructure is greatly increased. Due to the deep subwavelength field confinement (mode size $ < 10$~nm) of surface plasmons in the ultrathin metallic film (thickness $<4 $~nm), the Purcell enhancement of the metallic bowtie antenna improves by more than 25 times when the metal thickness decreases from 20~nm to 2~nm. In the hybrid nanostructures by combining an ultrathin metallic bowtie antenna with a silicon antenna, the Purcell enhancement (Fp$\,\approx 2.6\times 10^{6})$ in the hybrid nanostructures is 63 times greater than those ($\le 4.1\times 10^{4}$) in the previous metallic and hybrid nanostructures. Because of the reduced ratio of electromagnetic fields in the ultrathin metallic bowtie antenna when the high-index silicon antenna is under the quasi-BIC state, a high quantum yield (QY$\,\approx 0.70$) is obtained. Moreover, the good radiation directivity of the quasi-BIC (bound state in the continuum) mode of the silicon antenna and the reflection of the metallic substrate result in a high collection efficiency (CE$\,\approx 0.71$). Consequently, the overall enhancement factor of brightness of a SPE in the hybrid nanostructure is EF$^{\ast }\approx {\rm Fp}\times {\rm QY}\times {\rm CE}\approx 1.3\times 10^{6}$, which is $5.6\times 10^{2}$ times greater than those (EF$^{\ast }\le 2.2\times 10^{3}$) in the previous metallic and hybrid nanostructures.
|
Received: 14 July 2021
Revised: 27 August 2021
Accepted manuscript online: 08 September 2021
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0704401, 2017YFF0206103, and 2016YFA0203500), the National Natural Science Foundation of China (Grant Nos. 61922002, 91850103, 11674014, 61475005, 11527901, 11525414, and 91850111), and the Beijing Natural Science Foundation, China (Grant No. Z180015). |
Corresponding Authors:
Zhi Li, Jianjun Chen
E-mail: z_li@pku.edu.cn;jjchern@bnu.edu.cn
|
Cite this article:
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军) Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna 2022 Chin. Phys. B 31 014209
|
[1] Aharonovich I, Englund D and Toth M 2016 Nat. Photon. 10 631 [2] Scarani V, Pasquinucci H B, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301 [3] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595 [4] Elshaari A W, Pernice W, Srinivasan K, Benson O and Zwiller V 2020 Nat. Photon. 14 285 [5] Xu F X, Li X G and Zhang Z Y 2019 Acta Phys. Sin. 68 147103 (in Chinese) [6] Carolan J, Meinecke J D A, Shadbolt P J, Russell N J, Ismail N, Wörhoff K, Rudolph T, Thompson M G, O'Brien J L, Matthews J C F and Laing A 2014 Nat. Photon. 8 621 [7] Spagnolo N, Vitelli C, Bentivegna M, Brod D J, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvão E F and Sciarrino F 2014 Nat. Photon. 8 615 [8] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [9] Senellart P, Solomon G and White A 2017 Nat. Nanotechnol. 12 1026 [10] Yang Y, Zhen B, Hsu C W, Miller O D, Joannopoulos J D and Soljačić M 2016 Nano Lett. 16 4110 [11] Moreau A, Cirací C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A and Smith D R 2012 Nature 492 86 [12] Yamamoto N, Ohtani S and Abajo F J G 2010 Nano Lett. 11 91 [13] Sortino L, Zotev P G, Mignuzzi S, Cambiasso J, Schmidt D, Genco A, Aßmann M, Bayer M, Maier S A, Sapienza R and Tartakovskii A I 2019 Nat. Commun. 10 5119 [14] Feng T, Zhang W, Liang Z, Xu Y and Miroshnichenko A E 2018 ACS Photon. 5 678 [15] Kolchin P, Pholchai N, Mikkelsen M H, Oh J, Ota S, Islam M S, Yin X and Zhan X 2015 Nano Lett. 15 464 [16] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K and Moerner W E 2009 Nat. Photon. 3 654 [17] Punj D, Mivelle M, Moparthi S B, Zanten T S V, Rigneault H, Hulst N F, Parajó M F G and Wenger J 2013 Nat. Nanotechnol. 8 512 [18] Li Z, Kou J, Kim M, Lee J O and Choo H 2014 ACS Photon. 1 944 [19] Zhang G R, Jia S T, Gu Y and Chen J J 2019 Laser & Photonics Reviews 13 1900025 [20] Baumberg J J, Aizpurua J, Mikkelsen M H and Smith D R 2019 Nat. Mater. 18 668 [21] Rutckaia V, Heyroth F, Novikov A, Shaleev M, Petrov M and Schilling J 2017 Nano Lett. 17 6886 [22] Möller J R, Arend C, Pauly C, Mücklich F, Fischer M, Gsell S, Schreck M and Becher C 2014 Nano Lett. 14 5281 [23] Morozov S, Gaio M, Maier S A and Sapienza R 2018 Nano Lett. 18 3060 [24] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and Hulst N F 2010 Science 329 930 [25] Li W, Inostroza L M, Xu W, Zhang P, Renger J, Götzinger S and Chen X 2020 ACS Photon. 7 2474 [26] Aouani H, Mahboub O, Devaux E, Rigneault H, Ebbesen T W and Wenger J 2011 Nano Lett. 11 2400 [27] Langguth L, Punj D, Wenger J and Koenderink A F 2013 ACS Nano 7 8840 [28] Lian H, Gu Y, Ren J, Zhang F, Wang L and Gong Q 2015 Phys. Rev. Lett. 114 193002 [29] Qian Z, Li Z, Hao H, Shan L, Zhang Q, Dong J, Gong Q and Gu Y 2021 Phys. Rev. Lett. 126 023901 [30] Bigourdan F, Marquier F, Hugonin J P and Greffet J J 2014 Opt. Express 22 2337 [31] Ho J, Fu Y H, Dong Z, Dominguez R P, Koay E H H, Yu Y F, Valuckas V, Kuznetsov A I and Yang J K W 2018 ACS Nano 12 8616 [32] Rusak E, Staude I, Decker M, Sautter J, Miroshnichenko A E, Powell D A, Neshev D N and Kivshar Y S 2014 Appl. Phys. Lett. 105 221109 [33] Yang Y, Miller O D, Christensen T, Joannopoulos J D and Soljacicč M 2017 Nano Lett. 17 3238 [34] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 [35] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127 [36] Siahpoush V, Sondergaard T and Jung J 2012 Phys. Rev. B 85 075305 [37] Empedocles S A, Neuhauser R and Bawendi M G 1999 Nature 399 126 [38] Zhao P, Amani M, Lien D H, Ahn G H, Kiriya D, Mastandrea J P, Ager III J W, Yablonovitch E, Chrzan D C and Javey A 2017 Nano Lett. 17 5356 [39] Li X, Shepard G D, Cupo A, Camporeale N, Shayan K, Luo Y, Meunier V and Strauf S 2017 ACS Nano. 11 6652 [40] Tran T T, Bray K, Ford M J, Toth M and Aharonovich L 2016 Nat. Nanotechnol. 11 37 [41] Akselrod G M, Argyropoulos C, Hoang T B, Cirací C, Fang C, Huang J, Smith D R and Mikkelsen M H 2014 Nat. Photon. 8 835 [42] Maniyara R A, Rodrigo D, Yu R, Ferrer J C, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, Abajo F and Pruneri V 2019 Nat. Photon. 13 328 [43] Duan H G, Domínguez A I F, Bosman M, Maier S A and Yang J K W 2012 Nano Lett. 12 1683 [44] Koshelev K, Kruk S, Gaykazyan E M, Choi J H, Bogdanov A, Park H G and Kivshar Y 2020 Science 367 288 [45] Kan Y H, Ding F, Zhao C Y and Bozhevolnyi S I 2020 ACS Photon. 7 1111 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|