Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014203    DOI: 10.1088/1674-1056/25/1/014203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction

Qin Wu(吴琴)1,2, Yin Xiao(肖银)1, Zhi-Ming Zhang(张智明)1
1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
2. School of Information Engineering, Guangdong Medical University, Dongguan 523808, China
Abstract  

We propose a scheme for entangling two nanomechanical oscillators by Coulomb interaction in an optomechanical system. We find that the steady-state entanglement of two charged nanomechanical oscillators can be obtained when the coupling between them is stronger than a critical value which relies on the detuning. Remarkably, the degree of entanglement can be controlled by the Coulomb interaction and the frequencies of the two charged oscillators.

Keywords:  entanglement      Coulomb interaction      optomechanical system  
Received:  04 July 2015      Revised:  20 October 2015      Accepted manuscript online: 
PACS:  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  46.80.+j (Measurement methods and techniques in continuum mechanics of solids)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
Fund: 

Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009, and 11574092), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholar and Innovative Research Team in University, China (Grant No. IRT1243).

Corresponding Authors:  Zhi-Ming Zhang     E-mail:  zmzhang@scnu.edu.cn

Cite this article: 

Qin Wu(吴琴), Yin Xiao(肖银), Zhi-Ming Zhang(张智明) Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction 2016 Chin. Phys. B 25 014203

[1] Kippenberg T J and Vahala K J 2008 Science 321 1172
[2] Marquardt F and Girvin S M 2009 Physics 2 40
[3] Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
[4] Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621
[5] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
[6] Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
[7] Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
[8] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Diuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
[9] Shu J 2011 Chin. Phys. Lett. 28 104203
[10] Yan X B, Yang L, Tian X D, et al. 2014 Acta Phys. Sin. 63 204201 (in Chinese)
[11] Yan X B, Gu K H, Fu C B, et al. 2014 Chin. Phys. B 23 114201
[12] Rocheleau T, Ndukum T, Machlin C, Hertzberg J, Clerk A and Schwab K 2010 Nature 463 72
[13] Miao H, Danilishin S, Müller-Ebhardt H and Chen Y 2010 New J. Phys. 12 083032
[14] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[15] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316
[16] Akram U, Munro W, Nemoto K and Milburn G J 2012 Phys. Rev. A 86 042306
[17] Mi X W, Bai J X and Song K H 2013 Eur. Phys. J. D 67 115
[18] Palomaki T A, Teufel J D, Simmonds R W and Lehnert K W 2013 Science 342 710
[19] Joshi C, Akram U and Milburn G J 2014 New J. Phys. 16 023009
[20] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[21] Ghobadi R, Kumar S, Pepper B, Bouwmeester D, Lvovsky A I and Simon C 2014 Phys. Rev. Lett. 112 080503
[22] Ge W C, Al-Amri M, Nha H and Zubairy M S 2013 Phys. Rev. A 88 022338
[23] Zheng Q and Zhang D 2013 Chin. Phys. Lett. 30 024213
[24] Woolley M J, Doherty A C, Milburn G J and Schwab K C 2008 Phys. Rev. A 78 062303
[25] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
[26] Asjad M, Agarwal G S, Kim M S, Tombesi P, Di Giuseppe G and Vitali D 2014 Phys. Rev. A 89 023849
[27] Pinard M, Dantan A, Vitali D, Arcizet O, Briant T and Heidmann A 2005 Europhys. Lett. 72 747
[28] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808
[29] Huang S and Agarwal G S 2009 New J. Phys. 11 103044
[30] Tan H, Buchmann L F, Seok H and Li G 2013 Phys. Rev. A 87 022318
[31] Borkje K, Nunnenkamp A and Girvin S M 2011 Phys. Rev. Lett. 107 123601
[32] Woolley M J and Clerk A A 2013 Phys. Rev. A 87 063846
[33] Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. Lett. 90 137901
[34] Pirandola S, Mancini S, Vitali D and Tombesi P 2003 Phys. Rev. A 68 062317
[35] Pirandola S, Mancini S, Vitali D and Tombesi P 2004 J. Mod. Opt. 51 901
[36] Pirandola S, Vitali D, Tombesi P and Lloyd S 2006 Phys. Rev. Lett. 97 150403
[37] Zhou L, Han Y, Jing J T and Zhang W P 2011 Phys. Rev. A 83 052117
[38] Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503
[39] Löw U, Emery V J and Fabricius K 1994 Phys. Rev. Lett. 72 1918
[40] Bohm D and Pines D 1953 Phys. Rev. 92 609
[41] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[42] Hensinger W K, Utami D W, Goan H S, Schwab K, Monroe C and Milburn G J 2005 Phys. Rev. A 72 041405(R)
[43] Agarwal G S and Huang M 2012 Phys. Rev. A 85 021801(R)
[44] Genes C, Vitali D, Tombei D, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[45] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[46] Adesso G and Illuminati F 2007 J. Phys. A 40 7821
[47] Weedbrook C, Pirandola S, Garcia-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[48] Olivares S 2012 Eur. Phys. J. Special Topics 203 3
[49] Schliesser A, Riviere R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415
[50] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!