Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 014202    DOI: 10.1088/1674-1056/25/1/014202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

Yan-Chao She(佘彦超)1,2, Ting-Ting Luo(罗婷婷)2, Wei-Xi Zhang(张蔚曦)1,Mao-Wu Ran(冉茂武)1, Deng-Long Wang(王登龙)2
1. College of Physics and Electronic Engineering, Tongren University, Tongren 554300, China;
2. School of Physics and Optoelectronices, Xiangtan University, Xiangtan 411105, China
Abstract  The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/AlGaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications.
Keywords:  electromagnetically induced transparency      phonon-assisted transition      semiconductor quantum dot  
Received:  15 May 2015      Revised:  14 August 2015      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.67.De (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY[2015]384 and KY[2015]446).
Corresponding Authors:  Yan-Chao She, Deng-Long Wang     E-mail:  sheyanchao316@163.com;dlwang@xtu.edu.cn

Cite this article: 

Yan-Chao She(佘彦超), Ting-Ting Luo(罗婷婷), Wei-Xi Zhang(张蔚曦),Mao-Wu Ran(冉茂武), Deng-Long Wang(王登龙) Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition 2016 Chin. Phys. B 25 014202

[1] Nielsen P K, Thyrrestrup H, Mork J and Tromborg B 2007 Opt. Express 15 6396
[2] Yuan C H and Zhu K D 2006 Appl. Phys. Lett. 89 052115
[3] Yuan C H, Zhu K D and Jiang Y W 2007 J. Appl. Phys. 102 023109
[4] Villas-Bôas J M, Govorov A O and Ulloa S E 2004 Phys. Rev. B 69 125342
[5] Xu X, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D and Sham L J 2007 Science 317 929
[6] Hang C, Knototop V V and Huang G X 2009 Phys. Rev. A 79 033826
[7] Taranenko V B, Weiss C O and Stolz W 2001 Opt. Lett. 26 1574
[8] Chang-Hasnain C J, Ku P C, Kim J and Chuang S L 2003 Proc. IEEE 91 1884
[9] Devreese J T, Fomin V M, Gladilin V N, Pokatilov E P and Klimin S N 2002 Nanotechnology 13 163
[10] Muljarov E A, Takagahara T and Zimmermann R 2005 Phys. Rev. Lett. 95 177405
[11] Bissiri M, von Högersthal G B H, Bhatti A S, Capizzi M and Frova A 2000 Phys. Rev. B 62 4642
[12] Heitz R, Mukhametzhanov I, Stier O, Madhukar A and Bimberg D 1999 Phys. Rev. Lett. 83 4654
[13] Ku P C, Chang-Hasnain C J and Chuang S L 2002 Electron. Lett. 38 1581
[14] Yanik M F and Fan S 2004 Phys. Rev. Lett. 92 083901
[15] Bao Q, Zhang H, Yang J, Wang S, Tang D Y, Jose R, Ramakrishna S, Lim C T and Loh K P 2010 Adv. Funct. Mater. 20 782
[16] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Xiang Z S, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[17] Ku P C, Sedgwick F, Chang-Hasnain C J, Palinginis P, Li T, Wang H, Chang S W and Chuang S L 2004 Opt. Lett. 29 2291
[18] Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
[19] Liu W G, Pan F M and Cai L W 2014 Chin. Phys. B 23 064213
[20] Yang X Y and Jiang Y Y 2013 Chin. Phys. B 22 0114204
[21] Bai Y F, Yang W X, Han D A and Yu X Q 2012 Chin. Phys. B 21 0114208
[22] Hao X Y, Zheng A S, Wang Y and Li X G 2012 Commun. Theor. Phys. 57 866
[23] Gammon D, Snow E S, Shanabrook B V, Katzer D S and Park D 1996 Science 273 87
[24] Brunner K, Abstreiter G, Böhm G, Tränkle G and Weimann G 1994 Phys. Rev. Lett. 73 1138
[25] Harris S E 1989 Phys. Rev. Lett. 62 1033
[26] Hao X, Wu J and Wang Y 2012 J. Opt. Soc. Am. B 29 420
[27] Yang W X, Chen A X, Lee R K and Wu Y 2011 Phys. Rev. A 84 013835
[28] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[29] Au Y J, Fekete D, Pepper D M, Yariv A and Jain R K 1979 Opt. Lett. 4 42
[30] Robert W B 2011 J. Opt. Soc. Am. B 28 A38
[31] Sun H, Niu Y, Li R, Jin S and Gong S 2007 Opt. Lett. 32 2475
[32] Hao X, Yang W X, Lü X, Liu J, Huang P, Ding C and Yang X 2008 Phys. Lett. A 372 7081
[33] Hsu P S, Welch G R, Gord J R and Patnaik A K 2011 Phys. Rev. A 83 053819
[34] Yang W X, Zha T T and Lee R K 2009 Phys. Lett. A 374 355
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(11): 117305.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[14] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[15] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
No Suggested Reading articles found!