CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes |
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国) |
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China |
|
|
Abstract In a magnetic nanostripe, the effects of perpendicular magnetic anisotropy (PMA) on the current-driven horizontal motion of vortex wall along the stripe and the vertical motion of the vortex core are studied by micromagnetic simulations. The results show that the horizontal and vertical motion can generally be monotonously enhanced by PMA. However, when the current is small, a nonmonotonic phenomenon for the horizontal motion is found. Namely, the velocity of the horizontal motion firstly decreases and then increases with the increase of the PMA. We find that the reason for this is that the PMA can firstly increase and then decrease the confining force induced by the confining potential energy. In addition, the PMA always enhances the driving force induced by the current.
|
Received: 06 February 2015
Revised: 01 April 2015
Accepted manuscript online:
|
PACS:
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
72.25.Pn
|
(Current-driven spin pumping)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247026 and 11374253). |
Corresponding Authors:
Su Yuan-Chang, Hu Jing-Guo
E-mail: ycsu@yzu.edu.cn;jghu@yzu.edu.cn
|
Cite this article:
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国) Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes 2015 Chin. Phys. B 24 097506
|
[1] |
Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
|
[2] |
Boulle O, Malinowski G and Klaui M 2011 Mater. Sci. Eng. R. 72 159
|
[3] |
Martinez E 2012 J. Appl. Phys. 111 07D302
|
[4] |
Ryu J, Lee K J and Lee H W 2013 Appl. Phys. Lett. 102 172404
|
[5] |
Fan Z, Ma X P, Lee S H, Shim J H, Piao H G and Kim D H 2012 Acta Phys. Sin. 61 107502 (in Chinese)
|
[6] |
Kim K J, Lee J C, Yun S J, Gim G H, Lee K S, Choe S B and Shin K H 2010 Appl. Phys. Express 3 083001
|
[7] |
Emori S and Beach G S D 2011 Appl. Phys. Lett. 98 132508
|
[8] |
Bedau D, Kläui M, Hua M T, Krzyk S, Rüdiger U, Faini G and Vila L 2008 Phys. Rev. Lett. 101 256602
|
[9] |
Hayashi M, Thomas L, Rettner C, Moriya R and Parkina S S P 2008 Appl. Phys. Lett. 92 162503
|
[10] |
McMichael R D and Donahue M J 1997 IEEE. Trans. Magn. 33 4167
|
[11] |
Nakatani Y, Thiaville A and Miltat J 2005 J. Magn. Magn. Mater. 290 750
|
[12] |
Wang Y, Su Y and Hu J 2013 J. Magn. Magn. Mater. 328 21
|
[13] |
Kim S, Lee K, Kim W and Lee T 2007 Appl. Phys. Lett. 90 252508
|
[14] |
Laufenberg M, Bedau D, Ehrke H, Kläui M, Rüdiger U, Backes D, Heyderman L J, Nolting F, Vaz C A F, Bland J A C, Kasama T, Dunin-Borkowski R E, Cherifi S, Locatelli A and Heun S 2006 Appl. Phys. Lett. 88 212510
|
[15] |
Hayward T J, Bryan M T, Fry P W, Fundi P M, Gibbs M R J, Allwood D A, Im M Y and Fischer P 2010 Phys. Rev. B 81 020410(R)
|
[16] |
Hayward T J, Bryan M T, Fry P W, Fundi P M, Gibbs M R J, Im M Y, Fischer P and Allwood D A 2010 Appl. Phys. Lett. 96 052502
|
[17] |
O'Brien L, Lewis E R, Fernández-Pacheco A, Petit D, Cowburn R P, Sampaio J and Read D E 2012 Phys. Rev. Lett. 108 187202
|
[18] |
Su Y, Sun J, Hu J and Lei H 2013 Europhys. Lett. 103 67004
|
[19] |
Lin C, Gorman G, Lee C, Farrow R, Marinero E, Do H, Notarys H and Chien C 1991 J. Magn. Magn. Mater. 93 194
|
[20] |
He J, Li Z and Zhang S 2006 Phys. Rev. B 73 184408
|
[21] |
Nakatani Y, Thiaville A and Miltat J 2003 Nat. Mater. 2 521
|
[22] |
Martinez E, Lopez-Diaz L, Torres L, Tristan C and Alejos O 2007 Phys. Rev. B 75 174409
|
[23] |
Szambolics H, Toussaint J C, Marty A, Miron I M and Buda-Prejbeanu L D 2009 J. Magn. Magn. Mater. 321 1912
|
[24] |
Schieback C, Kläui M, Nowak U, Rüdiger U and Nielaba P 2007 Eur. Phys. J. B 59 429
|
[25] |
Wieser R, Vedmedenko E Y, Weinberger P and Wiesendanger R 2010 Phys. Rev. B 82 144430
|
[26] |
Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
|
[27] |
Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
|
[28] |
Mougin A, Cormier M, Adam J P, Metaxas P J and Ferré J 2007 Europhys. Lett. 78 57007
|
[29] |
Roy P E and Wunderlich J 2011 Appl. Phys. Lett. 99 122504
|
[30] |
Heyne L, Rhensius J, Ilgaz D, Bisig A, Rüdiger U and Kläui M 2010 Phys. Rev. Lett. 105 187203
|
[31] |
Eltschka M, Wötzel M, Rhensius J, Krzyk S, Nowak U and Kläui M 2010 Phys. Rev. Lett. 105 056601
|
[32] |
Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H and Fukamichi K 2002 J. Appl. Phys. 91 8037
|
[33] |
Guslienko K Y, Novosad V, Otani Y, Shima H and Fukamichi K 2001 Appl. Phys. Lett. 78 3848
|
[34] |
He J, Li Z and Zhang S 2006 J. Appl. Phys. 99 08G509
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|