Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 096201    DOI: 10.1088/1674-1056/24/9/096201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastic properties and electronic structures of lanthanide hexaborides

Duan Jie (段婕)a, Zhou Tong (周彤)a, Zhang Li (张莉)a, Du Ji-Guang (杜际广)b, Jiang Gang (蒋刚)a, Wang Hong-Bin (王宏斌)a
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  The structural, elastic, and electronic properties of a series of lanthanide hexaborides (LnB6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab initio simulation package. The calculated lattice and elastic constants of LnB6 are in good agreement with the available experimental data and other theoretical results. The polycrystalline Young's modulus, shear modulus, the ratio of bulk to shear modulus B/G, Poisson's ratios, Zener anisotropy factors, as well as the Debye temperature are calculated, and all of the properties display some regularity with increasing atomic number of lanthanide atoms, whereas anomalies are observed for EuB6 and YbB6. In addition, detailed electronic structure calculations are carried out to shed light on the peculiar elastic properties of LnB6. The total density of states demonstrates the existence of a pseudogap and indicates lower structure stability of EuB6 and YbB6 compared with others.
Keywords:  elastic properties      electronic structure      ab initio calculations      thermodynamic properties  
Received:  22 January 2015      Revised:  24 April 2015      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  71.15.-m (Methods of electronic structure calculations)  
  31.15.A- (Ab initio calculations)  
  05.70.-a (Thermodynamics)  
Corresponding Authors:  Zhang Li     E-mail:  lizhang@scu.edu.cn

Cite this article: 

Duan Jie (段婕), Zhou Tong (周彤), Zhang Li (张莉), Du Ji-Guang (杜际广), Jiang Gang (蒋刚), Wang Hong-Bin (王宏斌) Elastic properties and electronic structures of lanthanide hexaborides 2015 Chin. Phys. B 24 096201

[1] Kauer E 1963 Phys. Lett. 7 171
[2] Vandenberg J M, Matthias B T, Corenzwit E and Barz H 1975 Mater. Res. Bull. 10 889
[3] Lüthi B, Blumenröder S, Hillebrands B, Zirngiebl E, Güntherodt E and Winzer K 1984 Z. Phys. B Condens. Matter 58 31
[4] Xu N, Shi X, Biswas P K, Matt C E, Dhaka R S, Huang Y, Plumb N C, Radovi M, Dil J H, Pomjakushina E, Conder K, Amato A, Salman Z, Paul D M, Mesot J, Ding H and Shi M 2013 Phys. Rev. B 88 121102
[5] Wolgast S, Kurdak Č, Sun K, Allen J W, Kim D J and Fisk Z 2013 Phys. Rev. B 88 180405(R)
[6] Weng H M, Zhao J Z, Wang Z J, Fang Z and Dai X 2014 Phys. Rev. Lett. 112 016403
[7] Baranovskiy A E, Grechnev G E, Fil V D, Ignatova T V, Logosha A V, Panfilov A S, Svechkarev I V, Shitsevalova N Y, Filippov V B and Eriksson O 2007 J. Alloys Compd. 442 228
[8] Wang L, Luo G F, Valencia D, Sierra Llavina C H, Sabirianov R F, Lu J, Lu J Q, Mei W N and Cheung C L 2013 J. Appl. Phys. 114 143709
[9] Yu Y, Chen C L, Zhao G D, Zheng X L and Zhu X H 2014 Chin. Phys. Lett. 31 106301
[10] Grechnev G E, Baranovskiy A E, Fil V D, Ignatova T V, Kolobov I G, Logosha A V, Shitsevalova N Y, Filippov V B and Eriksson O 2008 Low Temp. Phys. 34 921
[11] Takegahara K, Kasaya M, Goto T and Kasuya T 1985 Phys. B+C 130 49
[12] Nakamura S, Goto T, Kunii S, Iwashita K and Tamaki A 1994 J. Phys. Soc. Jpn. 63 623
[13] Gürel T and Eryiğit R 2010 Phys. Rev. B 82 104302
[14] Gao M C, Rollett A D and Widom M 2007 Phys. Rev. B 75 174120
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Blöchl P E 1994 Phys. Rev. B 50 17953
[17] Kresse G and Hafner J 1993 Phys. Rev. B 47 558(R)
[18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5390
[21] Issa A, Saal J E and Wolverton C 2014 Acta Mater. 65 240
[22] Birch F 1947 Phys. Rev. 71 809
[23] Singh N, Saini S M, Nautiyal T and Auluck S 2007 J. Phys.: Condens. Matter 19 346226
[24] Walker H C, McEwen K A and McMorrow D F 2009 Phys. Rev. B 79 054402
[25] Zhang M F, Wang X Q, Zhang X W, Wang P F, Xiong S L, Shi L and Qian Y T 2009 J. Solid State Chem. 182 3098
[26] Takahashi K and Kunii S 1997 J. Solid State Chem. 133 198
[27] Blomberg M K, Merisalo M J, Korsukova M M and Gurin V N 1995 J. Alloys Compd. 217 123
[28] Zherlitsyn S, Wolf B, Lüthi B, Lang M, Hinze P, Uhrig E, Assmus W, Ott H R, Young D P and Fisk Z 2001 Eur. Phys. J. B 22 327
[29] Tanaka T, Yoshimoto J, Ishii M, Bannai E and Kawai S 1977 Solid State Commun. 22 203
[30] Lundström T, Lönnberg B, Törmä B, Etourneau J and Tarascon J M 1982 Phys. Scr. 26 414
[31] Massidda S, Continenza A, Pascale T M de and Monnier R 1997 Z. Phys. B 102 83
[32] Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H and Sheng X W 2013 Acta Phys. Sin. 62 107402 (in Chinese)
[33] Qi C J, Feng J, Zhou R F, Jiang Y H and Zhou R 2013 Chin. Phys. Lett. 30 117101
[34] Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matter 15 5307
[35] Sin'ko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989
[36] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[37] Hill R 1952 Proc. Phys. Soc. A 65 349
[38] Voigt W 1928 Lehrbuch der Kristallphysik (B. G. Teubner: Leipzig)
[39] Reuss A and Angew Z 1929 Math. Mech. 9 55
[40] Godwal B K, Petruska E A, Speziale S, Yan J, Clark S M, Kruger M B and Jeanloz R 2009 Phys. Rev. B 80 172104
[41] Pugh S F 1954 Philos. Mag. 45 823
[42] Yang J W, Gao T and Gong Y R 2014 Solid State Sci. 32 76
[43] Cai T, Zhang Z J, Zhang P, Yang J B and Zhang Z F 2014 J. Appl. Phys. 116 163512
[44] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[45] Sa B S, Zhou J and Sun Z M 2012 Intermetallics 22 92
[46] Xu G L, Chen J D, Xia Y Z, Liu X F, Liu Y F and Zhang X Z 2009 Chin. Phys. Lett. 26 056201
[47] Mogulkoc Y, Ciftci Y O, Kabak M and Colakoglu K 2014 Superlattices Microstruct. 71 46
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!