CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Elastic properties and electronic structures of lanthanide hexaborides |
Duan Jie (段婕)a, Zhou Tong (周彤)a, Zhang Li (张莉)a, Du Ji-Guang (杜际广)b, Jiang Gang (蒋刚)a, Wang Hong-Bin (王宏斌)a |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract The structural, elastic, and electronic properties of a series of lanthanide hexaborides (LnB6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab initio simulation package. The calculated lattice and elastic constants of LnB6 are in good agreement with the available experimental data and other theoretical results. The polycrystalline Young's modulus, shear modulus, the ratio of bulk to shear modulus B/G, Poisson's ratios, Zener anisotropy factors, as well as the Debye temperature are calculated, and all of the properties display some regularity with increasing atomic number of lanthanide atoms, whereas anomalies are observed for EuB6 and YbB6. In addition, detailed electronic structure calculations are carried out to shed light on the peculiar elastic properties of LnB6. The total density of states demonstrates the existence of a pseudogap and indicates lower structure stability of EuB6 and YbB6 compared with others.
|
Received: 22 January 2015
Revised: 24 April 2015
Accepted manuscript online:
|
PACS:
|
62.20.D-
|
(Elasticity)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
05.70.-a
|
(Thermodynamics)
|
|
Corresponding Authors:
Zhang Li
E-mail: lizhang@scu.edu.cn
|
Cite this article:
Duan Jie (段婕), Zhou Tong (周彤), Zhang Li (张莉), Du Ji-Guang (杜际广), Jiang Gang (蒋刚), Wang Hong-Bin (王宏斌) Elastic properties and electronic structures of lanthanide hexaborides 2015 Chin. Phys. B 24 096201
|
[1] |
Kauer E 1963 Phys. Lett. 7 171
|
[2] |
Vandenberg J M, Matthias B T, Corenzwit E and Barz H 1975 Mater. Res. Bull. 10 889
|
[3] |
Lüthi B, Blumenröder S, Hillebrands B, Zirngiebl E, Güntherodt E and Winzer K 1984 Z. Phys. B Condens. Matter 58 31
|
[4] |
Xu N, Shi X, Biswas P K, Matt C E, Dhaka R S, Huang Y, Plumb N C, Radovi M, Dil J H, Pomjakushina E, Conder K, Amato A, Salman Z, Paul D M, Mesot J, Ding H and Shi M 2013 Phys. Rev. B 88 121102
|
[5] |
Wolgast S, Kurdak Č, Sun K, Allen J W, Kim D J and Fisk Z 2013 Phys. Rev. B 88 180405(R)
|
[6] |
Weng H M, Zhao J Z, Wang Z J, Fang Z and Dai X 2014 Phys. Rev. Lett. 112 016403
|
[7] |
Baranovskiy A E, Grechnev G E, Fil V D, Ignatova T V, Logosha A V, Panfilov A S, Svechkarev I V, Shitsevalova N Y, Filippov V B and Eriksson O 2007 J. Alloys Compd. 442 228
|
[8] |
Wang L, Luo G F, Valencia D, Sierra Llavina C H, Sabirianov R F, Lu J, Lu J Q, Mei W N and Cheung C L 2013 J. Appl. Phys. 114 143709
|
[9] |
Yu Y, Chen C L, Zhao G D, Zheng X L and Zhu X H 2014 Chin. Phys. Lett. 31 106301
|
[10] |
Grechnev G E, Baranovskiy A E, Fil V D, Ignatova T V, Kolobov I G, Logosha A V, Shitsevalova N Y, Filippov V B and Eriksson O 2008 Low Temp. Phys. 34 921
|
[11] |
Takegahara K, Kasaya M, Goto T and Kasuya T 1985 Phys. B+C 130 49
|
[12] |
Nakamura S, Goto T, Kunii S, Iwashita K and Tamaki A 1994 J. Phys. Soc. Jpn. 63 623
|
[13] |
Gürel T and Eryiğit R 2010 Phys. Rev. B 82 104302
|
[14] |
Gao M C, Rollett A D and Widom M 2007 Phys. Rev. B 75 174120
|
[15] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[16] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[17] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558(R)
|
[18] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[19] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[20] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5390
|
[21] |
Issa A, Saal J E and Wolverton C 2014 Acta Mater. 65 240
|
[22] |
Birch F 1947 Phys. Rev. 71 809
|
[23] |
Singh N, Saini S M, Nautiyal T and Auluck S 2007 J. Phys.: Condens. Matter 19 346226
|
[24] |
Walker H C, McEwen K A and McMorrow D F 2009 Phys. Rev. B 79 054402
|
[25] |
Zhang M F, Wang X Q, Zhang X W, Wang P F, Xiong S L, Shi L and Qian Y T 2009 J. Solid State Chem. 182 3098
|
[26] |
Takahashi K and Kunii S 1997 J. Solid State Chem. 133 198
|
[27] |
Blomberg M K, Merisalo M J, Korsukova M M and Gurin V N 1995 J. Alloys Compd. 217 123
|
[28] |
Zherlitsyn S, Wolf B, Lüthi B, Lang M, Hinze P, Uhrig E, Assmus W, Ott H R, Young D P and Fisk Z 2001 Eur. Phys. J. B 22 327
|
[29] |
Tanaka T, Yoshimoto J, Ishii M, Bannai E and Kawai S 1977 Solid State Commun. 22 203
|
[30] |
Lundström T, Lönnberg B, Törmä B, Etourneau J and Tarascon J M 1982 Phys. Scr. 26 414
|
[31] |
Massidda S, Continenza A, Pascale T M de and Monnier R 1997 Z. Phys. B 102 83
|
[32] |
Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H and Sheng X W 2013 Acta Phys. Sin. 62 107402 (in Chinese)
|
[33] |
Qi C J, Feng J, Zhou R F, Jiang Y H and Zhou R 2013 Chin. Phys. Lett. 30 117101
|
[34] |
Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matter 15 5307
|
[35] |
Sin'ko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989
|
[36] |
Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
|
[37] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[38] |
Voigt W 1928 Lehrbuch der Kristallphysik (B. G. Teubner: Leipzig)
|
[39] |
Reuss A and Angew Z 1929 Math. Mech. 9 55
|
[40] |
Godwal B K, Petruska E A, Speziale S, Yan J, Clark S M, Kruger M B and Jeanloz R 2009 Phys. Rev. B 80 172104
|
[41] |
Pugh S F 1954 Philos. Mag. 45 823
|
[42] |
Yang J W, Gao T and Gong Y R 2014 Solid State Sci. 32 76
|
[43] |
Cai T, Zhang Z J, Zhang P, Yang J B and Zhang Z F 2014 J. Appl. Phys. 116 163512
|
[44] |
Anderson O L 1963 J. Phys. Chem. Solids 24 909
|
[45] |
Sa B S, Zhou J and Sun Z M 2012 Intermetallics 22 92
|
[46] |
Xu G L, Chen J D, Xia Y Z, Liu X F, Liu Y F and Zhang X Z 2009 Chin. Phys. Lett. 26 056201
|
[47] |
Mogulkoc Y, Ciftci Y O, Kabak M and Colakoglu K 2014 Superlattices Microstruct. 71 46
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|