Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088503    DOI: 10.1088/1674-1056/24/8/088503

Low frequency noise and radiation response in the partially depleted SOI MOSFETs with ion implanted buried oxide

Liu Yuan (刘远)a, Chen Hai-Bo (陈海波)b, Liu Yu-Rong (刘玉荣)c, Wang Xin (王信)d, En Yun-Fei (恩云飞)a, Li Bin (李斌)c, Lu Yu-Dong (陆裕东)a
a Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, CEPREI, Guangzhou 510610, China;
b No. 58th Research Institute of China Electronics Technology Group Corporation, Wuxi 214035, China;
c School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China;
d Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Abstract  Low frequency noise behaviors of partially depleted silicon-on-insulator (PDSOI) n-channel metal-oxide semiconductors (MOS) transistors with and without ion implantation into the buried oxide are investigated in this paper. Owing to ion implantation-induced electron traps in the buried oxide and back interface states, back gate threshold voltage increases from 44.48 V to 51.47 V and sub-threshold swing increases from 2.47 V/dec to 3.37 V/dec, while electron field effect mobility decreases from 475.44 cm2/V·s to 363.65 cm2/V·s. In addition, the magnitude of normalized low frequency noise also greatly increases, which indicates that the intrinsic electronic performances are degenerated after ion implantation processing. According to carrier number fluctuation theory, the extracted flat-band voltage noise power spectral densities in the PDSOI devices with and without ion implantation are equal to 7×10-10 V2·Hz-1 and 2.7×10-8 V2·Hz-1, respectively, while the extracted average trap density in the buried oxide increases from 1.42×1017 cm-3·eV-1 to 6.16×1018 cm-3·eV-1. Based on carrier mobility fluctuation theory, the extracted average Hooge's parameter in these devices increases from 3.92×10-5 to 1.34×10-2 after ion implantation processing. Finally, radiation responses in the PDSOI devices are investigated. Owing to radiation-induced positive buried oxide trapped charges, back gate threshold voltage decreases with the increase of the total dose. After radiation reaches up to a total dose of 1 M·rad(si), the shifts of back gate threshold voltage in the SOI devices with and without ion implantation are-10.82 V and-31.84 V, respectively. The low frequency noise behaviors in these devices before and after radiation are also compared and discussed.
Keywords:  silicon on insulator      ion implantation      ionizing radiation      low frequency noise  
Received:  28 November 2014      Revised:  28 March 2015      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
  61.80.Ed (γ-ray effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204112 and 61204116).
Corresponding Authors:  Lu Yu-Dong     E-mail:

Cite this article: 

Liu Yuan (刘远), Chen Hai-Bo (陈海波), Liu Yu-Rong (刘玉荣), Wang Xin (王信), En Yun-Fei (恩云飞), Li Bin (李斌), Lu Yu-Dong (陆裕东) Low frequency noise and radiation response in the partially depleted SOI MOSFETs with ion implanted buried oxide 2015 Chin. Phys. B 24 088503

[1] Baumann R C 2005 IEEE Trans. Dev. Mater. Res. 5 305
[2] Peng C, Hu Z Y, Ning B X, Huang H X, Fan S, Zhang Z X, Bi D W and En Y F 2014 Chin. Phys. B 23 090702
[3] Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P and Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522
[4] Felix J A, Schwank J R, Cirba C R, Schrimpf R D, Shaneyfelt M R, Fleetwood D M and Dodd P E 2004 Microelectron. Eng. 72 332
[5] Zheng Z S, Liu Z L, Yu F and Li N 2012 Chin. Phys. B 21 116104
[6] Mrstik B J, Hughes H L, McMarr P J, Lawrence R K, Ma D I, Isaacson I P and Walker R A 2000 IEEE Trans. Nucl. Sci. 47 2189
[7] Mrstik B J, Hughes H L, McMarr P J and Gouker P 2001 Microelectron. Eng. 59 285
[8] Nazarov A N, Gebal T, Rebohle L, Skorupa W, Osiyuk I N and Lysenko V S 2003 J. Appl. Phys. 94 4440
[9] Zhang E X, Qian C, Zhang Z X, Lin C L and Wang X 2006 Chin. Phys. 15 792
[10] Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M and Wang X 2005 Chin. Phys. 14 565
[11] Xiong H D, Jun B, Fleetwood D M, Schrimpf R D and Schwank J R 2004 IEEE Trans. Nucl. Sci. 51 3238
[12] Schwank J R, Fleetwood D M, Xiong H D, Shaneyfelt M R and Draper B L 2004 Microelectron. Eng. 72 362
[13] Xiong H D, Fleetwood D M and Schwank J R 2004 IEEE Proc. Circ. Dev. Syst. 151 118
[14] Liu Y, Wu W J, En Y F, Wang L, Lei Z F and Wang X H 2014 IEEE Electron. Dev. Lett. 35 369
[15] Simoen E, Mercha A, Claey C and Lukyanchikova N 2007 Solid-State Electron. 51 16
[16] Liu Y, Chen H B, He Y J, Wang X, Yue L, En Y F and Liu M H 2015 Acta Phys. Sin. 64 078501 (in Chinese)
[17] Fleetwood D M, Shaneyfelt M R and Schwank J R 1994 Appl. Phys. Lett. 64 1965
[18] Fung T C, Baek G and Kanicki J 2010 J. Appl. Phys. 108 074518
[19] Liu S T, Balster S and Sinha S 1999 IEEE Trans. Nucl. Sci. 46 1817
[20] Ferlet-Cavrois V, Colladant T, Pailet P, Leray J L, Musseau O, Schwank J R, Shaneyfelt M R, Pelloie J L and Poncharra J 2000 IEEE Trans. Nucl. Sci. 47 2183
[21] Christensson S, Lundstrom I and Svensson C 1968 Solid-State Electron. 11 797
[22] Liu Y, Wu W J, Li B, En Y F, Wang L and Liu Y R 2014 Acta Phys. Sin. 63 098503 (in Chinese)
[23] Ioannidis E G, Tsormpatzoglou A, Tassis D H, Dimitriadis C A, Templier F and Kamarinos G 2010 J. Appl. Phys. 108 106103
[24] Tsormpatzoglou A, Hastas N A, Mahmoudabadi F, Choi N, Hatalis M K and Dimitriadis C A 2013 IEEE Electron. Dev. Lett. 34 1403
[25] Hooge F N 1994 IEEE Trans. Electron. Dev. 41 1926
[26] Vandamme L K J and Hooge F N 2008 IEEE Trans. Electron. Dev. 55 3070
[27] Rhayem J, Rigaud D, Valenza M, Szydlo N and Lebrun 2000 J. Appl. Phys. 87 1983
[28] Necliudov P V, Rumyanstev S L, Shur M S, Gundlach D J and Jackson T N 2000 J. Appl. Phys. 88 5395
[29] Fleetwood D M, Meisenheimer T L and Scofield J H 1994 IEEE Trans. Electron. Dev. 41 1953
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[3] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[4] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[5] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[6] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[7] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[8] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[9] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[10] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[11] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[12] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[13] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[14] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[15] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
No Suggested Reading articles found!