Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087503    DOI: 10.1088/1674-1056/24/8/087503
SPECIAL TOPIC—Silicene Prev   Next  

Antiferromagnetic and topological states in silicene: A mean field study

Liu Feng (刘峰)a b, Liu Cheng-Cheng (刘铖铖)b, Yao Yu-Gui (姚裕贵)b
a State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
b School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron–electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K' for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state.
Keywords:  spin-polarized quantum anomalous Hall state      silicene      antiferromagnetic state  
Received:  05 June 2015      Revised:  29 June 2015      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  73.43.-f (Quantum Hall effects)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).
Corresponding Authors:  Yao Yu-Gui     E-mail:  ygyao@bit.edu.cn

Cite this article: 

Liu Feng (刘峰), Liu Cheng-Cheng (刘铖铖), Yao Yu-Gui (姚裕贵) Antiferromagnetic and topological states in silicene: A mean field study 2015 Chin. Phys. B 24 087503

[1] Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[2] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[3] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[4] Cahangirov S, Topsakal M, Aktürk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[5] Drummond N D, Zólyomi V and Falko V I 2012 Phys. Rev. B 85 075423
[6] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[7] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[8] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[9] Ezawa M 2012 New J. Phys. 14 033003
[10] Ezawa M 2013 Phys. Rev. B 87 155415
[11] Tahir M and Schwingenschlögl U 2012 arXiv: 1207.4745v1 [cond-mat.mes-hall]
[12] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2012 Appl. Phys. Lett. 97 223109
[13] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[14] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[15] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[16] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[17] Kara A, Enriquez H, Seitsonen A P, Voon L L Y, Vizzini S, Aufray B and Oughaddou H 2012 Surface Science Reports 67 1
[18] Velasco J Jr, Jing L, Bao W, Lee Y, Kratz P, Aji V, Bockrath M, Lau C N, Varma C, Stillwell R, Smirnov D, Zhang F, Jung J and MacDonald A H 2012 Nat. Nanotech. 7 156
[19] Freitag F, Weiss M, Maurand R, Trbovic J and Schönenberger C 2013 Phys. Rev. B 87 161402
[20] Weitz R T, Allen M T, Feldman B E, Martin J and Yacoby A 2010 Science 330 812
[21] Freitag F, Trbociv J, Weiss M and Schnenberger C 2012 Phys. Rev. Lett. 108 076602
[22] Veligura A, van Elferen H J, Tombros N, Maan J C, Zeitler U and van Wees B J 2012 Phys. Rev. B 85 155412
[23] Bao W, Velasco J Jr, Jing L, Zhang F, Standley B, Smirnov D, Bockrath M, MacDonald A H and Lau C N 2012 Proc. Natl. Acad. Sci. USA 109 10802
[24] Min H, Borghi G, Polini M and MacDonald A H 2008 Phys. Rev. B 77 041407(R)
[25] Vafek O and Yang K 2010 Phys. Rev. B 81 041401(R)
[26] Zhang F, Min H, Polini M and MacDonald A H 2010 Phys. Rev. B 81 041402(R)
[27] Nandkishore R and Levitov L 2010 Phys. Rev. Lett. 104 156803
[28] Lemonik Y, Aleiner I L, Toke C and Falko V I 2010 Phys. Rev. B 82 201408(R)
[29] Vafek O 2010 Phys. Rev. B 82 205106
[30] Nandkishore R and Levitov L 2010 Phys. Rev. B 82 115124
[31] Zhang F, Jung J, Fiete G A, Niu Q and MacDonald A H 2011 Phys. Rev. Lett. 106 156801
[32] Jung J, Zhang F and MacDonald A H 2011 Phys. Rev. B 83 115408
[33] Lemonik Y, Aleiner I L and Fal'ko V I 2012 Phys. Rev. B 85 245451
[34] Cvetkovic V, Throckmorton R E and Vafek O 2012 Phys. Rev. B 86 075467
[35] Zhu L, Aji V and Varma C M 2013 Phys. Rev. B 87 035427
[36] Zhang F and MacDonald A H 2012 Phys. Rev. Lett. 108 186804
[37] Scherer M M, Uebelacker S and Honerkamp C 2012 Phys. Rev. B 85 235408
[38] Xu D H, Yuan J, Yao Z J, Zhou Y, Gao J H and Zhang F C 2012 Phys. Rev. B 86 201404
[39] Wang Y, Wang H, Gao J H and Zhang F C 2013 Phys. Rev. B 87 195413
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Baskaran G 2013 arXiv: 1309.2242 [cond-mat.str-el]
[43] Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
[44] Martelo L M, Dzierzawa M, Siffert L and Baeriswyl D 1997 Z. Phys. B 103 335
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[3] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[4] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[5] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[6] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[7] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[8] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[9] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[10] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[11] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[12] The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure
Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发). Chin. Phys. B, 2018, 27(12): 127401.
[13] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[14] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[15] Spin-valley Hall conductivity of doped ferromagnetic silicene under strain
Bahram Shirzadi, Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(1): 017203.
No Suggested Reading articles found!