Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086103    DOI: 10.1088/1674-1056/24/8/086103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Irradiation effects of graphene and thin layer graphite induced by swift heavy ions

Zeng Jian (曾健)a, Liu Jie (刘杰)a, Zhang Sheng-Xia (张胜霞)a b, Zhai Peng-Fei (翟鹏飞)a, Yao Hui-Jun (姚会军)a, Duan Jing-Lai (段敬来)a, Guo Hang (郭航)a b, Hou Ming-Dong (侯明东)a, Sun You-Mei (孙友梅)a
a Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Graphene and thin graphite films deposited on SiO2/Si are irradiated by swift heavy ions (209Bi, 9.5 MeV/u) with the fluences in a range of 1011 ions/cm2–1012 ions/cm2 at room temperature. Both pristine and irradiated samples are investigated by Raman spectroscopy. For pristine graphite films, the "blue shift" of 2D bond and the "red shift" of G bond with the decrease of thickness are found in the Raman spectra. For both irradiated graphene and thin graphite films, the disorder-induced D peak and D' peak are detected at the fluence above a threshold Φth. The thinner the film, the lower the Φth is. In this work, the graphite films thicker than 60 nm reveal defect free via the absence of a D bond signal under the swift heavy ion irradiation till the fluence of 2.6×1012 ions/cm2. For graphite films thinner than 6 nm, the area ratios between D peak and G peak increase sharply with reducing film thickness. It concludes that it is much easier to induce defects in thinner films than in thicker ones by swift heavy ions. The intensities of the D peak and D' peak increase with increasing ion fluence, which predicts the continuous impacting of swift heavy ions can lead to the increasing of defects in samples. Different defect types are detected in graphite films of different thickness values. The main defect types are discussed via the various intensity ratios between the D peak and D' peak (HD/HD').

Keywords:  graphene      thin graphite films      swift heavy ions      irradiation effect  
Received:  19 January 2015      Revised:  08 April 2015      Accepted manuscript online: 
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11179003, 10975164, 10805062, 11005134, and 11275237).

Corresponding Authors:  Liu Jie     E-mail:  j.liu@impcas.ac.cn

Cite this article: 

Zeng Jian (曾健), Liu Jie (刘杰), Zhang Sheng-Xia (张胜霞), Zhai Peng-Fei (翟鹏飞), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Guo Hang (郭航), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅) Irradiation effects of graphene and thin layer graphite induced by swift heavy ions 2015 Chin. Phys. B 24 086103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[3] Han M, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[4] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[5] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[6] Peres N, Guinea F and Castro Neto A 2006 Phys. Rev. B 73 125411
[7] Geim A K 2009 Science 324 1530
[8] Hashimoto A, Suenaga K, Gloter A, Urita K and Iijima S 2004 Nature 430 870
[9] Fischbein M D and DrndićM 2008 Appl. Phys. Lett. 93 113107
[10] Teweldebrhan D and Balandin A A 2009 Appl. Phys. Lett. 94 013101
[11] Compagnini G, Giannazzo F, Sonde S, Raineri V and Rimini E 2009 Carbon 47 3201
[12] Chen J H, Cullen W, Jang C, Fuhrer M and Williams E 2009 Phys. Rev. Lett. 102 236805
[13] Lucchese M M, Stavale F, Ferreira E H M, Vilani C, Moutinho M V O, Capaz R B, Achete C A and Jorio A 2010 Carbon 48 1592
[14] Tapasztó L, Dobrik G, Nemes-Incze P, Vertesy G, Lambin P and Biró L 2008 Phys. Rev. B 78 233407
[15] Bell D C, Lemme M C, Stern L A, Williams J R and Marcus C M 2009 Nanotechnology 20 455301
[16] Akcöltekin S, Bukowska H, Peters T, Osmani O, Monnet I, Alzaher I, d'Etat B B, Lebius H and Schleberger M 2011 Appl. Phys. Lett. 98 103103
[17] Blake P, Hill E W, Neto A H C, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
[18] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[19] Nemanich R J and Solin S A 1979 Phys. Rev. B 20 392
[20] Ferrari A C 2007 Solid State Commun. 143 47
[21] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Solid State Commun. 143 44
[22] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Eur. Phys. J.-Spec. Top. 148 171
[23] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
[24] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[25] Reich S and Thomsen C 2004 Philos. T. Roy. Soc. A 362 2271
[26] Zhai P F, Liu J, Duan J L, Chang H L, Zeng J, Hou M D and Sun Y M 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 2035
[27] Liu J, Neumann R, Trautmann C and Müller C 2001 Phys. Rev. B 64 184115
[28] Zeng J, Yao H J, Zhang S X, Zhai P F, Duan J L, Sun Y M, Li G P and Liu J 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 330 18
[29] Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov K S and Casiraghi C 2012 Nano. Lett. 12 3925
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!