Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086104    DOI: 10.1088/1674-1056/24/8/086104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analytical model for describing ion guiding through capillaries in insulating polymers

Liu Shi-Dong (刘世东)a b, Zhao Yong-Tao (赵永涛)a, Wang Yu-Yu (王瑜玉)a, Stolterfoht Nc, Cheng Rui (程锐)a, Zhou Xian-Ming (周贤明)a, Xu Hu-Shan (徐瑚珊)a, Xiao Guo-Qing (肖国青)a
a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Helmholtz–Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
Abstract  An analytical description for guiding of ions through nanocapillaries is given on the basis of previous work. The current entering into the capillary is assumed to be divided into a current fraction transmitted through the capillary, a current fraction flowing away via the capillary conductivity and a current fraction remaining within the capillary, which is responsible for its charge-up. The discharging current is assumed to be governed by the Frenkel–Poole process. At higher conductivities the analytical model shows a blocking of the ion transmission, which is in agreement with recent simulations. Also, it is shown that ion blocking observed in experiments is well reproduced by the analytical formula. Furthermore, the asymptotic fraction of transmitted ions is determined. Apart from the key controlling parameter (charge-to-energy ratio), the ratio of the capillary conductivity to the incident current is included in the model. Differences resulting from the nonlinear and linear limits of the Frenkel–Poole discharge are pointed out.
Keywords:  ion guiding      charging and discharging time      blocked transmission      asymptotic transmission  
Received:  24 November 2014      Revised:  09 March 2015      Accepted manuscript online: 
PACS:  61.85.+p (Channeling phenomena (blocking, energy loss, etc.) ?)  
  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 2010CB832902) and the National Natural Science Foundation of China (Grant Nos. 11275241, 11275238, 11105192, and 11375034).
Corresponding Authors:  Zhao Yong-Tao, Wang Yu-Yu     E-mail:  zhaoyt@impcas.ac.cn;wangyuyu@impcas.ac.cn

Cite this article: 

Liu Shi-Dong (刘世东), Zhao Yong-Tao (赵永涛), Wang Yu-Yu (王瑜玉), Stolterfoht N, Cheng Rui (程锐), Zhou Xian-Ming (周贤明), Xu Hu-Shan (徐瑚珊), Xiao Guo-Qing (肖国青) Analytical model for describing ion guiding through capillaries in insulating polymers 2015 Chin. Phys. B 24 086104

[1] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A and Sulik B 2002 Phys. Rev. Lett. 88 133201
[2] Skog P, Zhang H Q and Schuch R 2008 Phys. Rev. Lett. 101 223202
[3] Stolterfoht N, Hoffmann V, Hellhammer R, Pešić Z D, Fink D, Petrov A and Sulik B 2003 Nucl. Instrum. Method B 203 246
[4] Krause H F, Vane C R and Meyer F W 2007 Phys. Rev. A 75 042901
[5] Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M and Hoekstra R 2009 Phys. Rev. A 79 022901
[6] Kanai K, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N and Yamazaki Y 2009 Phys. Rev. A 79 012711
[7] Zhang H Q, Skog P and Schuch R 2010 Phys. Rev. A 82 052901
[8] Schiessl K, Palfinger W, Lemell C and Burgdörfer J 2005 Nucl. Instrum. Method B 232 228
[9] Schiessl K, Palfinger W, Tökèsi K, Nowotny H, Lemell C and Burgdörfer J 2005 Phys. Rev. A 72 062902
[10] Stolterfoht N 2013 Phys. Rev. A 87 012902
[11] Stolterfoht N 2013 Phys. Rev. A 87 032901
[12] Víkor Gy, Rajendra kumar R T, Pešić Z D, Stolterfoht N and Schuch R 2005 Nucl. Instrum. Method B 233 218
[13] Sahana M B, Skog P, Víkor Gy, Rajendra Kumar R T and Schuch R 2006 Phys. Rev. A 73 040901
[14] Chen X M, Xi F Y, Qiu X Y, Shao J X, Xiao G Q, Cui Y, Sun G Z, Wang J, Chen Y F, Liu H P, Yin Y Z, Wang Y Y, Li D H, Lou F J, Wang X A, X J K and Zhou C L 2009 Chin. Phys. B 18 1955
[15] Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y and Ding B W 2009 Chin. Phys. B 18 2739
[16] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E and Hoekstra R 2011 Phys. Rev. A 83 062901
[17] Li D H, Wang Y Y, Zhao Y T, Xiao G Q, Zhao D, Xu Z F and Li F L 2009 Chin. Phys. Lett. 26 063402
[18] Allen F I, Persaud A, Park S J, Minor A, Sakurai M, Schneider D H and Schenkel T 2006 Nucl. Instrum. Method B 244 323
[19] Chen J, Xue Y, Liu J, Wu Y, Ruan F, Wang W, Yu D and Cai X 2012 Nucl. Instrum. Method B 281 26
[20] Kreller M, Günter Zschornack and Kentsch U 2011 Nucl. Instrum. Method B 269 1032
[21] Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S and Sakurai M 2009 Nucl. Instrum. Method B 267 2381
[22] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H and Narusawa T 2008 Nucl. Instrum. Method B 266 1324
[23] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T and Narusawa T 2006 Appl. Phys. Lett. 89 163502
[24] Gruber E, Kowarik G, Ladinig F, Waclawek J P, Schrempf D, Aumayr F, Bereczky R J, Tökèsi K, Gunacker P, Schweigler T, Lemell C and Burgdörfer J 2012 Phys. Rev. A 86 062901
[25] Bereczky R J, Kowarik G, Aumayr F and Tökèsi K 2009 Nucl. Instrum. Method B 267 317
[26] Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátèfi-Temfli S, Mátèfi-Temfli M and Piraux L 2007 Phys. Rev. A 75 030901
[27] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökèsi K and Tanis J A 2011 Phys. Rev. A 83 012707
[28] Feng D, Shao J X, Ji M C, Zou X R, Wang G Y, Ma Y Z, Zhou W, Zhou H, Li Y, Zhou M and Chen X M 2009 Phys. Rev. A 85 064901
[29] Lv X Y, Chen L, Chen X M, Jia J J, Zhou P, Zhou C L, Qiu X Y, Shao J X, Cui Y, Yin Y Z, Wang H W and Ji M C 2011 Chin. Phys. B 20 013401
[30] Stolterfoht N, Hellhammer R, Sobocinski P, Pešić Z D, Bundesmann J, Sulik B, Shah M B, Dunn K, Pedregosa J and McCullough R W 2005 Nucl. Instrum. Method B 235 460
[31] Stolterfoht N, Hellhammer R, Pešić Z D, Hoffmann V, Bundesmann J, Petrov A, Fink D and Sulik B 2005 Surf. Coat. Technol. 196 389
[32] Stolterfoht N, Hellhammer R, Bundesmann J and Fink D 2009 Nucl. Instrum. Method B 267 226
[33] Hellhammer R, Pešić Z D, Sobocinski P, Fink D, Bundesmann J and Stolterfoht N 2005 Nucl. Instrum. Method B 233 213
[34] Hellhammer R, Fink D and Stolterfoht N 2007 Nucl. Instrum. Method B 261 149
[35] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C and Schuch R 2012 Phys. Rev. Lett. 108 193202
[36] Stolterfoht N, Hellhammer R, Pešić Z D, Hoffmann V, Bundesmann J, Petrov A, Fink D and Sulik B 2004 Vacuum 73 31
[37] Hellhammer R, Bundesmann J, Fink D and Stolterfoht N 2007 Nucl. Instrum. Method B 258 159
[38] Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara K, Ikeda T and Yamazaki Y 2007 Phys. Rev. A 76 022712
[39] Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J and Sulik B 2012 Nucl. Instrum. Method B 279 177
[40] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Reitsma G and Hoekstra R 2013 Phys. Rev. A 88 032902
[41] Stolterfoht N 2014 Phys. Rev. A 89 062706
[42] Frenkel J 1938 Phys. Rev. 54 647
[43] Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M and Hoekstra R 2009 Phys. Rev. A 79 042902
[1] Simulations of guiding of low-energy ions through a single nanocapillary in insulating materials
Shi-Dong Liu(刘世东), Yong-Tao Zhao(赵永涛), Yu-Yu Wang(王瑜玉). Chin. Phys. B, 2017, 26(10): 106104.
[2] Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model
Lazar Karbunar, Duško Borka, Ivan Radović, Zoran L Mišković. Chin. Phys. B, 2016, 25(4): 046106.
[3] Molecular dynamics simulation of Cun clusters scattering from a single-crystal Cu (111) surface: The influence of surface structure
Xianwen Luo(罗先文), Meng Wang(王勐), Bitao Hu(胡碧涛). Chin. Phys. B, 2016, 25(2): 027901.
[4] Study of depth-dependent tetragonal distortion of quaternary AlInGaN epilayer by Rutherford backscattering/channeling
G. Husnain, Chen Tian-Xiang(陈田祥), Fa Tao(法涛), and Yao Shu-De(姚淑德). Chin. Phys. B, 2010, 19(8): 087205.
[5] Energy loss of low energy ion N+q grazing on the Al(111) surface
Hu Bi-Tao(胡碧涛), Chen Chun-Hua(陈春花), Song Yu-Shou(宋玉收), and Gu Jian-Gang(顾建刚). Chin. Phys. B, 2007, 16(5): 1285-1289.
[6] Local structure changes of Cu55 cluster during heating
Zhang Lin(张林), Zhang Cai-Bei(张彩碚), and Qi Yang(祁阳). Chin. Phys. B, 2007, 16(1): 77-82.
[7] Dispersive properties of tunnelling-induced transparency in an asymmetric double quantum well
Su Xue-Mei (苏雪梅), Zhuo Zhong-Chang (卓仲畅), Wang Li-Jun (王立军), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2002, 11(11): 1175-1178.
[8] ION-BEAM-INDUCED SOLID PHASE CRYSTALLIZATION OF MeV Si+-IMPLANTED Si(100)
XU TIAN-BING (徐天冰), ZHU PEI-RAN (朱沛然), ZHOU JUN-SI (周俊思), LI DAI-QING (李岱青), REN TING-QI (任廷琦), ZHAO QING-TAI (赵清太), LIU XIANG-DONG (刘向东), LIU JIE-TIAN (刘洁田). Chin. Phys. B, 1995, 4(2): 118-124.
[9] ABNORMAL ENERGY DEPENDENCE OF AXIAL MINIMUM CHANNELING YIELDS IN GexSi1-x/Si(100) STRAINED
HUANG MENG-BING (黄孟兵), ZHAO GUO-QING (赵国庆), ZHOU ZHU-YING (周筑颖), TANG JIA-YONG (汤家镛), YANG FU-JIA (杨福家). Chin. Phys. B, 1993, 2(10): 737-744.
[10] THE STUDIES OF NON-RUTHERFORD BACKSCATTERING CROSS SECTIONS OF 4He FROM 16O
CHENG HUAN-SHENG (承焕生), SHEN HAO (沈皓), TANG JIA-YONG (汤家镛), YANG FU-JIA (杨福家). Chin. Phys. B, 1993, 2(9): 641-647.
[11] FORMATION OF A BURIED LAYER OF ALUMINIUM NITRIDE BY HIGH DOSE N2+ IMPLANTATION INTO ALUMINIUM
LIN CHENG-LU (林成鲁), P.L.F.HEMMENT, LI JIN-HUA (李金华), SHI ZUO-YU (施左宇), Y.LI, J.A.KILNER. Chin. Phys. B, 1993, 2(5): 376-385.
No Suggested Reading articles found!