CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Analytical model for describing ion guiding through capillaries in insulating polymers |
Liu Shi-Dong (刘世东)a b, Zhao Yong-Tao (赵永涛)a, Wang Yu-Yu (王瑜玉)a, Stolterfoht Nc, Cheng Rui (程锐)a, Zhou Xian-Ming (周贤明)a, Xu Hu-Shan (徐瑚珊)a, Xiao Guo-Qing (肖国青)a |
a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; b University of Chinese Academy of Sciences, Beijing 100049, China; c Helmholtz–Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany |
|
|
Abstract An analytical description for guiding of ions through nanocapillaries is given on the basis of previous work. The current entering into the capillary is assumed to be divided into a current fraction transmitted through the capillary, a current fraction flowing away via the capillary conductivity and a current fraction remaining within the capillary, which is responsible for its charge-up. The discharging current is assumed to be governed by the Frenkel–Poole process. At higher conductivities the analytical model shows a blocking of the ion transmission, which is in agreement with recent simulations. Also, it is shown that ion blocking observed in experiments is well reproduced by the analytical formula. Furthermore, the asymptotic fraction of transmitted ions is determined. Apart from the key controlling parameter (charge-to-energy ratio), the ratio of the capillary conductivity to the incident current is included in the model. Differences resulting from the nonlinear and linear limits of the Frenkel–Poole discharge are pointed out.
|
Received: 24 November 2014
Revised: 09 March 2015
Accepted manuscript online:
|
PACS:
|
61.85.+p
|
(Channeling phenomena (blocking, energy loss, etc.) ?)
|
|
34.50.Fa
|
(Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))
|
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 2010CB832902) and the National Natural Science Foundation of China (Grant Nos. 11275241, 11275238, 11105192, and 11375034). |
Corresponding Authors:
Zhao Yong-Tao, Wang Yu-Yu
E-mail: zhaoyt@impcas.ac.cn;wangyuyu@impcas.ac.cn
|
Cite this article:
Liu Shi-Dong (刘世东), Zhao Yong-Tao (赵永涛), Wang Yu-Yu (王瑜玉), Stolterfoht N, Cheng Rui (程锐), Zhou Xian-Ming (周贤明), Xu Hu-Shan (徐瑚珊), Xiao Guo-Qing (肖国青) Analytical model for describing ion guiding through capillaries in insulating polymers 2015 Chin. Phys. B 24 086104
|
[1] |
Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A and Sulik B 2002 Phys. Rev. Lett. 88 133201
|
[2] |
Skog P, Zhang H Q and Schuch R 2008 Phys. Rev. Lett. 101 223202
|
[3] |
Stolterfoht N, Hoffmann V, Hellhammer R, Pešić Z D, Fink D, Petrov A and Sulik B 2003 Nucl. Instrum. Method B 203 246
|
[4] |
Krause H F, Vane C R and Meyer F W 2007 Phys. Rev. A 75 042901
|
[5] |
Stolterfoht N, Hellhammer R, Fink D, Sulik B, Juhász Z, Bodewits E, Dang H M and Hoekstra R 2009 Phys. Rev. A 79 022901
|
[6] |
Kanai K, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N and Yamazaki Y 2009 Phys. Rev. A 79 012711
|
[7] |
Zhang H Q, Skog P and Schuch R 2010 Phys. Rev. A 82 052901
|
[8] |
Schiessl K, Palfinger W, Lemell C and Burgdörfer J 2005 Nucl. Instrum. Method B 232 228
|
[9] |
Schiessl K, Palfinger W, Tökèsi K, Nowotny H, Lemell C and Burgdörfer J 2005 Phys. Rev. A 72 062902
|
[10] |
Stolterfoht N 2013 Phys. Rev. A 87 012902
|
[11] |
Stolterfoht N 2013 Phys. Rev. A 87 032901
|
[12] |
Víkor Gy, Rajendra kumar R T, Pešić Z D, Stolterfoht N and Schuch R 2005 Nucl. Instrum. Method B 233 218
|
[13] |
Sahana M B, Skog P, Víkor Gy, Rajendra Kumar R T and Schuch R 2006 Phys. Rev. A 73 040901
|
[14] |
Chen X M, Xi F Y, Qiu X Y, Shao J X, Xiao G Q, Cui Y, Sun G Z, Wang J, Chen Y F, Liu H P, Yin Y Z, Wang Y Y, Li D H, Lou F J, Wang X A, X J K and Zhou C L 2009 Chin. Phys. B 18 1955
|
[15] |
Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y and Ding B W 2009 Chin. Phys. B 18 2739
|
[16] |
Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E and Hoekstra R 2011 Phys. Rev. A 83 062901
|
[17] |
Li D H, Wang Y Y, Zhao Y T, Xiao G Q, Zhao D, Xu Z F and Li F L 2009 Chin. Phys. Lett. 26 063402
|
[18] |
Allen F I, Persaud A, Park S J, Minor A, Sakurai M, Schneider D H and Schenkel T 2006 Nucl. Instrum. Method B 244 323
|
[19] |
Chen J, Xue Y, Liu J, Wu Y, Ruan F, Wang W, Yu D and Cai X 2012 Nucl. Instrum. Method B 281 26
|
[20] |
Kreller M, Günter Zschornack and Kentsch U 2011 Nucl. Instrum. Method B 269 1032
|
[21] |
Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S and Sakurai M 2009 Nucl. Instrum. Method B 267 2381
|
[22] |
Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H and Narusawa T 2008 Nucl. Instrum. Method B 266 1324
|
[23] |
Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T and Narusawa T 2006 Appl. Phys. Lett. 89 163502
|
[24] |
Gruber E, Kowarik G, Ladinig F, Waclawek J P, Schrempf D, Aumayr F, Bereczky R J, Tökèsi K, Gunacker P, Schweigler T, Lemell C and Burgdörfer J 2012 Phys. Rev. A 86 062901
|
[25] |
Bereczky R J, Kowarik G, Aumayr F and Tökèsi K 2009 Nucl. Instrum. Method B 267 317
|
[26] |
Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátèfi-Temfli S, Mátèfi-Temfli M and Piraux L 2007 Phys. Rev. A 75 030901
|
[27] |
Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökèsi K and Tanis J A 2011 Phys. Rev. A 83 012707
|
[28] |
Feng D, Shao J X, Ji M C, Zou X R, Wang G Y, Ma Y Z, Zhou W, Zhou H, Li Y, Zhou M and Chen X M 2009 Phys. Rev. A 85 064901
|
[29] |
Lv X Y, Chen L, Chen X M, Jia J J, Zhou P, Zhou C L, Qiu X Y, Shao J X, Cui Y, Yin Y Z, Wang H W and Ji M C 2011 Chin. Phys. B 20 013401
|
[30] |
Stolterfoht N, Hellhammer R, Sobocinski P, Pešić Z D, Bundesmann J, Sulik B, Shah M B, Dunn K, Pedregosa J and McCullough R W 2005 Nucl. Instrum. Method B 235 460
|
[31] |
Stolterfoht N, Hellhammer R, Pešić Z D, Hoffmann V, Bundesmann J, Petrov A, Fink D and Sulik B 2005 Surf. Coat. Technol. 196 389
|
[32] |
Stolterfoht N, Hellhammer R, Bundesmann J and Fink D 2009 Nucl. Instrum. Method B 267 226
|
[33] |
Hellhammer R, Pešić Z D, Sobocinski P, Fink D, Bundesmann J and Stolterfoht N 2005 Nucl. Instrum. Method B 233 213
|
[34] |
Hellhammer R, Fink D and Stolterfoht N 2007 Nucl. Instrum. Method B 261 149
|
[35] |
Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C and Schuch R 2012 Phys. Rev. Lett. 108 193202
|
[36] |
Stolterfoht N, Hellhammer R, Pešić Z D, Hoffmann V, Bundesmann J, Petrov A, Fink D and Sulik B 2004 Vacuum 73 31
|
[37] |
Hellhammer R, Bundesmann J, Fink D and Stolterfoht N 2007 Nucl. Instrum. Method B 258 159
|
[38] |
Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara K, Ikeda T and Yamazaki Y 2007 Phys. Rev. A 76 022712
|
[39] |
Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J and Sulik B 2012 Nucl. Instrum. Method B 279 177
|
[40] |
Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Reitsma G and Hoekstra R 2013 Phys. Rev. A 88 032902
|
[41] |
Stolterfoht N 2014 Phys. Rev. A 89 062706
|
[42] |
Frenkel J 1938 Phys. Rev. 54 647
|
[43] |
Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M and Hoekstra R 2009 Phys. Rev. A 79 042902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|