Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028502    DOI: 10.1088/1674-1056/ac7b1d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection

Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰)
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  A novel structure of low-voltage trigger silicon-controlled rectifiers (LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge (ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.
Keywords:  electrostatic discharge      floating n-well      low-voltage trigger silicon-controlled rectifier  
Received:  26 March 2022      Revised:  17 June 2022      Accepted manuscript online:  22 June 2022
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61904110)
Corresponding Authors:  Wugang Liao     E-mail:  wgliao@szu.edu.cn

Cite this article: 

Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰) Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection 2023 Chin. Phys. B 32 028502

[1] Kranthi N K and Sarro J D 2021 IEEE Trans. Electron Dev. 68 4242
[2] Du F and Liou J J 2019 IEEE Trans. Electron Dev. 66 2062
[3] Ma Q G, Wang H H and Zhang S D 2019 Acta Phys Sin. 68 158501 (in Chinese)
[4] Lin C Y, Wu Y H and Ker MD 2016 IEEE Electron Dev. Lett. 37 1387
[5] Cui Q, Salcedo J A, Parthasarathy S, Zhou Y, Liou J J and Hajjar J J 2013 IEEE Electron Dev. Lett. 34 178
[6] Lee J H, Prabhu M and Natarajan M I 2018 IEEE Electron Dev. Lett. 39 1011
[7] Guan J, Wang Y, Hao S, Zheng Y and Jin X 2017 IEEE Electron Dev. Lett. 38 1716
[8] Du F and Liou J J 2020 IEEE Trans. Electron Dev. 67 576
[9] Liang H, Xu Q, Zhu L, Gu X, Sun G and Lin F 2019 IEEE Electron Dev. Lett. 40 163
[10] Song B B, Do K I and Koo Y S 2018 IEEE J. Electron Dev. Soc. 6 691
[11] Huang X, Liou J J, Liu Z, Liu F, Liu J and Cheng H 2016 IEEE Electron Dev. Lett. 37 1311
[12] Ker M D and Chen S H 2007 IEEE J. Solid-State Circuits. 42 1158
[13] Parthasarathy S, Salcedo J A and Hajjar J 2013 Proceedings of the IEEE International Reliability Physics Symposium, April 14-18, 2013, Anaheim, USA, p. EL.5.1
[14] Wang Y, Chen X, Jia D, Lu J, Wei W and Dong P 2020 IEEE Trans. Dev. Mater. Relib. 20 658
[15] Chen R, Liu H, Song W, Du F and Zhang H 2020 Nanoscale Res. Lett. 15 212
[16] Han Y, Song B, Dong S R, Li M L and Ma F 2010 Microelectron. Rel. 51 332
[17] Song W, Du F B and Liu Z W 2020 Semicond. Sci. Technol. 35 055015
[18] Salcedo J A, Liou J J, Liu Z and Vinson J E 2007 IEEE Trans. Electron Dev. 54 822
[19] Ma Q G, Zhou L F, Yu Y, Ma G Y and Zhang S D 2019 Acta Phys Sin. 68 108501 (in Chinese)
[20] Li J Y, Wang Y and Jia D D 2020 Chin. Phys. B 29 108501
[21] Jin X, Zheng Y, Wang Y, Guan J and Hao S 2017 Solid-State Electron. 139 69
[22] Dong S R, Wu J, Miao M and Liou J J 2012 IEEE Electron Dev. Lett. 33 1345
[23] Chen H W, Chen S L, Huang Y T and Chen H H 2020 IEEE J. Electron Dev. Soc. 8 864
[1] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[2] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[3] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[4] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[5] Design of a novel high holding voltage LVTSCR with embedded clamping diode
Ling Zhu(朱玲), Hai-Lian Liang(梁海莲), Xiao-Feng Gu(顾晓峰), Jie Xu(许杰). Chin. Phys. B, 2020, 29(6): 068503.
[6] High holding voltage SCR for robust electrostatic discharge protection
Zhao Qi(齐钊), Ming Qiao(乔明), Yitao He(何逸涛), Bo Zhang(张波). Chin. Phys. B, 2017, 26(7): 077304.
[7] Structure-dependent behaviors of diode-triggered silicon controlled rectifier under electrostatic discharge stress
Li-Zhong Zhang(张立忠), Yuan Wang(王源), Yan-Dong He(何燕冬). Chin. Phys. B, 2016, 25(12): 128501.
[8] Novel substrate trigger SCR-LDMOS stacking structure for high-voltage ESD protection application
Ma Jin-Rong (马金荣), Qiao Ming (乔明), Zhang Bo (张波). Chin. Phys. B, 2015, 24(4): 047303.
[9] An improved GGNMOS triggered SCR for high holding voltage ESD protection applications
Zhang Shuai (张帅), Dong Shu-Rong (董树荣), Wu Xiao-Jing (吴晓京), Zeng Jie (曾杰), Zhong Lei (钟雷), Wu Jian (吴健). Chin. Phys. B, 2015, 24(10): 108502.
[10] A novel diode string triggered gated-PiN junction device for electrostatic discharge protection in 65-nm CMOS technology
Zhang Li-Zhong (张立忠), Wang Yuan (王源), Lu Guang-Yi (陆光易), Cao Jian (曹健), Zhang Xing (张兴). Chin. Phys. B, 2015, 24(10): 108503.
[11] Low-parasitic ESD protection strategy for RF ICs in 0.35μm CMOS process
Wang Yuan(王源), Jia Song(贾嵩), Chen Zhong-Jian(陈中建), and Ji Li-Jiu(吉利久). Chin. Phys. B, 2006, 15(10): 2297-2305.
No Suggested Reading articles found!