Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068501    DOI: 10.1088/1674-1056/24/6/068501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High efficiency, large-active-area superconducting nanowire single-photon detectors

Gu Min (顾敏)a, Zhang La-Bao (张蜡宝)a, Kang Lin (康琳)a, Zhao Qing-Yuan (赵清源)a, Jia Tao (郏涛)a, Wan Chao (万超)a, Xu Rui-Ying (徐睿莹)a, Yang Xiao-Zhong (杨小忠)a, Wu Pei-Heng (吴培亨)a, Zhang Yong (张永)b, Xia Jin-Song (夏金松)b
a Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering,Nanjing University, Nanjing 210093, China;
b Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information,Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

Niobium nitride superconducting nanowire single-photon detectors were fabricated on thermally oxidized silicon substrates with large active areas of 30 μm × 30 μm. To achieve non-constricted detectors, we improved the film growth and electron beam lithography process to fabricate uniform 100-nm wide NbN nanowires with a fill factor of 50%. The devices showed 72.4% system detection efficiency (SDE) at 100-Hz dark count rate (DCR) and 74-ps timing jitter, measured at the fiber communication wavelength of 1550 nm. The highest SDE which is 81.2% when the DCR is ~700 c/s appears at the wavelength of 1650 nm.

Keywords:  single photon      superconductor      nanowire  
Received:  03 January 2015      Revised:  24 March 2015      Accepted manuscript online: 
PACS:  85.25.Pb (Superconducting infrared, submillimeter and millimeter wave detectors)  
  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Corresponding Authors:  Kang Lin     E-mail:  kanglin@nju.edu.cn
About author:  85.25.Pb; 07.57.Kp; 85.60.Gz

Cite this article: 

Gu Min (顾敏), Zhang La-Bao (张蜡宝), Kang Lin (康琳), Zhao Qing-Yuan (赵清源), Jia Tao (郏涛), Wan Chao (万超), Xu Rui-Ying (徐睿莹), Yang Xiao-Zhong (杨小忠), Wu Pei-Heng (吴培亨), Zhang Yong (张永), Xia Jin-Song (夏金松) High efficiency, large-active-area superconducting nanowire single-photon detectors 2015 Chin. Phys. B 24 068501

[1] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
[2] Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Jin B B and Wu P H 2011 Acta Phys. Sin. 60 038501 (in Chinese)
[3] Wang Y J, Ding T, Ma H Q and Jiao R Z 2014 Chin. Phys. B 23 060308
[4] Gu M, Kang L, Zhang L B, Zhao Q Y, Jia T, Wang C, Xu R Y, Yang X Z and Wu P H 2015 Chin. Phys. Lett. 32 038501
[5] Zhao L, Jin Y R, Li J, Deng H and Zheng D N 2014 Chin. Phys. B 23 087402
[6] Miki S, Yamashita T, Terai H and Wang Z 2013 Opt. Express 21 10208
[7] Hadfield R H, Habif J L, Schlafer J, Schwall R E and Nam S W 2006 Appl. Phys. Lett. 89 241129
[8] Marsili F, Najafi F, Dauler E, Bellei F, Hu X, Csete M, Molnar R J and Berggren K K 2011 Nano Lett. 11 2048
[9] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photon. 7 210
[10] Rosenberg D, Kerman A J, Molnar R J and Dauler E A 2013 Opt. Express 21 1440
[11] Yamashita T, Miki S, Terai H and Wang Z 2013 Opt. Express 21 27177
[12] Miki S, Yamashita T, Fujiwara M, Sasaki M and Zhen W 2011 IEEE Trans. Appl. Supercond. 21 332-5
[13] Marsili F, Gaggero A, Li L H, Surrente A, Leoni R, Lévy F and Fiore A 2009 Supercond. Sci. Tech. 22 095013
[14] Kang L, Jin B B, Liu X Y, Jia X Q, Chen J, Ji Z M, Xu W W, Wu P H, Mi S B, Pimenov A, Wu Y J and Wang B G 2011 J. Appl. Phys. 109 033908
[15] Miki S, Fujiwara M, Sasaki M, Baek B, Miller A J, Hadfield R H, Nam S W and Wang Z 2008 Appl. Phys. Lett. 92 061116
[16] Zhang L, Zhao Q, Zhong Y, Chen J, Cao C, Xu W, Kang L, Wu P and Shi W 2009 Appl. Phys. B 97 187
[17] Ejrnaes M, Casaburi A, Cristiano R, Quaranta O, Marchetti S and Pagano S 2009 J. Mod. Opt. 56 390
[18] Liu D, Miki S, Yamashita T, You L, Wang Z and Terai H 2014 Opt. Express 22 21167
[19] Olkhovets A and Craighead H G 1999 J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 17 1366
[20] Anderson E H, Olynick D L, Chao W, Harteneck B and Veklerov E 2001 J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 19 2504
[21] Zhang L B, Zhong Y Y, Kang L, Chen J, Ji Z M, Xu W W and Cao C H 2009 Chin. Sci. Bull. 54 2150
[22] Zhao Q, Zhang L, Jia T, Kang L, Xu W, Chen J and Wu P 2011 Appl. Phys. B 104 673
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[3] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[4] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[5] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[6] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[7] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[8] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[11] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[12] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[15] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
No Suggested Reading articles found!