Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 068402    DOI: 10.1088/1674-1056/24/6/068402
RAPID COMMUNICATION Prev   Next  

Toward the complete relational graph of fundamental circuit elements

Shang Da-Shan (尚大山), Chai Yi-Sheng (柴一晟), Cao Ze-Xian (曹则贤), Lu Jun (陆俊), Sun Young (孙阳)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

A complete and harmonized fundamental circuit relational graph with four linear and four memory elements is constructed based on some newly defined elements, which provides a guide to developing novel circuit functionalities in the future. In addition to resistors, capacitors, and inductors, which are defined in terms of a linear relationship between charge q, current i, voltage v, and magnetic flux φ, Chua proposed in 1971 a fourth linear circuit element to directly relate φ and q. A nonlinear resistive device defined in memory i–v relation and dubbed memristor, was later attributed to such an element and has been realized in various material structures. Here we clarify that the memristor is not the true fourth fundamental circuit element but the memory extension to the concept of resistor, in analogy to the extension of memcapacitor to capacitor and meminductor to inductor. Instead, a two-terminal device employing the linear ME effects, termed transtor, directly relates φ and q and should be recognized as the fourth linear element. Moreover, its memory extension, termed memtranstor, is proposed and analyzed here.

Keywords:  memristor      fundamental circuit element      magnetoelectric effect      transtor      memtranstor  
Received:  22 April 2015      Accepted manuscript online: 
PACS:  84.30.Bv (Circuit theory)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  85.90.+h (Other topics in electronic and magnetic devices and microelectronics)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11227405, 11374347, 11274363, and 11474335) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030200).

Corresponding Authors:  Shang Da-Shan, Chai Yi-Sheng, Sun Young     E-mail:  youngsun@iphy.ac.cn
About author:  84.30.Bv; 85.70.Ay; 85.90.+h; 75.85.+t

Cite this article: 

Shang Da-Shan (尚大山), Chai Yi-Sheng (柴一晟), Cao Ze-Xian (曹则贤), Lu Jun (陆俊), Sun Young (孙阳) Toward the complete relational graph of fundamental circuit elements 2015 Chin. Phys. B 24 068402

[1] Chua L O 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[5] Waser R and Aono M 2008 Mater. Today 11 28
[7] Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312
[8] Shang D S, Sun J R, Shen B G and Matthias W 2013 Chin. Phys. B 22 067202
[9] Chua L O 2009 Proc. IEEE 97 1717
[11] Han J H, Song C, Gao S, Wang Y Y, Chen C and Pan F 2014 ACS Nano 8 10043
[12] Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryhanen T and Bailey M J A 2015 Nat. Mater. 14 199
[13] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[14] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[15] Pershin Y V, Ventra M D 1926 Z. Phys. 36 300
[19] Fiebig M 2006 Nature 442 759
[21] Nowick A S 1995 Crystal Properties via Group Theory (Cambridge: Cambridge University Press)
[22] Hespanha J P 2009 Linear System Theory (Princeton, NJ: Princeton University Press)
[23] Brown W F Jr, Hornreich R M and Shtrikman S 1968 Phys. Rev. 168 574
[24] Tellegen B D H 1948 Philip Res. Rep. 3 81
[25] Zhai J, Gao J, Vreugd C D, Li J, Viehland D, Filippov A V, Bichurin M I, Drozdov D V, Semenov G A and Dong S X 2009 Eur. Phys. J. B 71 383
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[5] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[8] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!