|
|
Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction |
Xie Ting-Xian (解廷献)a, Zhang Ying-Ying (张莹莹)b, Shi Ying (石英)b, Li Ze-Rui (李泽瑞)b, Jin Ming-Xing (金明星)b |
a Department of Physics, Dalian Jiaotong University, Dalian 116028, China; b Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Quasi-classical trajectory (QCT) studies on the stereodynamics of H + BrO→O + HBr reaction have been performed on the X1A' state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phys. 113 4598] in a collision energy range from 0 kcal/mol to 6 kcal/mol. Two of the polarization-dependent generalized differential cross sections (PDDCSs), (2π/σ)(dσ00/dωt) (PDDCS00) and (2π/σ)(dσ20/dωt) (PDDCS20) are considered. The rotational polarizations of these products show sensitive behaviors to the calculated collision energy range. Furthermore, in order to gain more knowledge about vector correlations, the product angular distribution, P(θr), and the dihedral angle, P(ør), are calculated, and the results indicate that both the rotational alignment and orientation of the product are enhanced as collision energy increases.
|
Received: 18 January 2014
Revised: 06 March 2014
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the Science Fund from Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for ITER (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069). |
Corresponding Authors:
Shi Ying
E-mail: shi_ying@jlu.edu.cn
|
Cite this article:
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星) Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction 2015 Chin. Phys. B 24 043402
|
[1] |
Ruscic B and Berkowitz J 1994 J. Chem. Phys. 101 7795
|
[2] |
Orlando J J and Burkholder J B 1995 J. Phys. Chem. 99 1143
|
[3] |
Lee J J 1995 J. Phys. Chem. 99 15074
|
[4] |
Spencer J E and Glass G P 1977 Int. J. Chem. Kinet. 9 97
|
[5] |
Palmieri P, Puzzarini C and Tarroni R 1996 Chem. Phys. Lett. 256 409
|
[6] |
Balucani N, Beneventi L, Casavecchia P, Volpi G G, Kruss E G and Sloan J J 1994 Can. J. Chem. 72 888
|
[7] |
Wine P H, Wells J R and Ravishankara A R 1986 J. Chem. Phys. 84 1349
|
[8] |
McRae G A and Cohen E A 1990 J. Mol. Spectrosc. 139 369
|
[9] |
Orphal J, Kou Q, Tchana F K, Pirali O and Flaud J M 2003 J. Mol. Spectrosc. 221 239
|
[10] |
Brouard M and Valance C 2001 Phys. Chem. Chem. Phys. 3 3602
|
[11] |
Peterson K A 2000 J. Chem. Phys. 113 4598
|
[12] |
Tang B Y, Tang Q K, Chen M D, Han K L and Zhang J Z H 2004 J. Chem. Phys. 120 8537
|
[13] |
Zuo G P, Tang B Y and Han K L 2005 Acta. Phys. Chim. Sin. 21 1022
|
[14] |
Zhang Y Y, Shi Y, Xie T X, Jin M X and Hu Z 2013 Chin. Phys. B 22 083402
|
[15] |
Martínez T, Hernández M L, Avari J M, Laganà A, Aoiz F J, Menéndez M and Verdasco E 2000 Phys. Chem. Chem. Phys. 2 589
|
[16] |
Zhao D, Zhang T Y and Chu T S 2010 Can. J. Chem. 88 893
|
[17] |
Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
|
[18] |
Zhou S W, Wang Y H and Lu R F 2012 Chem. Phys. 402 113
|
[19] |
Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
|
[20] |
Chen M D, Tang B Y, Han K L and Lou N Q 2001 Chem. Phys. Lett. 337 349
|
[21] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
|
[22] |
Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
|
[23] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[24] |
Ma J J, Chen M D, Cong S L and Han K L 2006 Chem. Phys. 327 529
|
[25] |
Aoiz F J, Herrero V J and Sáez R V 1992 J. Chem. Phys. 97 7423
|
[26] |
Zhao D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
|
[27] |
Wang M L, Han K L, Zhan J P, Wu V W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307
|
[28] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
|
[29] |
Han K L, He G Z and Lou N Q 1992 Chin. J. Chem. Phys. 96 7865
|
[30] |
Han K L, He G Z and Lou N Q 1991 Chem. Phys. Lett. 178 528
|
[31] |
Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
|
[32] |
Yao C X and Zhao G J 2013 Chin. Phys. B 22 083403
|
[33] |
Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
|
[34] |
Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
[35] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[36] |
Wang L Z, Yang C L, Liang J J, Xiao J and Zhang Q G 2011 Chin. J. Chem. Phys. 24 686
|
[37] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
[38] |
Liu Y F, Zhang W, Shi D H and Sun J F 2009 Chin. Phys. B 18 4264
|
[39] |
Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
|
[40] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[41] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
[42] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|