Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 083402    DOI: 10.1088/1674-1056/28/8/083402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface

Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧)
School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China
Abstract  Quasi-classical trajectory (QCT) calculations are reported for the H+LiH (v=0-2, j=0)→Li+H2 reaction on a new ground electronic state global potential energy surface (PES) of the LiH2 system. Reaction probability and integral cross sections (ICSs) are calculated for collision energies in the range of 0 eV-0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism (i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections (PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore, the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.
Keywords:  quasi-classical trajectory      H+LiH      vibrational excitation      reaction dynamics  
Received:  05 March 2019      Revised:  19 May 2019      Accepted manuscript online: 
PACS:  34.50.-s (Scattering of atoms and molecules)  
  82.20.Fd (Collision theories; trajectory models)  
  82.20.-w (Chemical kinetics and dynamics)  
Corresponding Authors:  Yu-Liang Wang     E-mail:  yarmiay@163.com

Cite this article: 

Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧) Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface 2019 Chin. Phys. B 28 083402

[40] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[1] Maoli R, Melchiorri F and Tosti D 1994 Astrophys. J. 425 372
[41] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[2] Signore M, Vedrenne G, Debernardis P, Dubrovich V, Encrenaz P, Maoli R, Masi S, Mastrantonio G, Melchiorri B, Melchiorri F and Tanzilli P E 1994 Astrophys. J. Suppl. Ser. 92 535
[42] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[3] Dubrovich V K and Lipovka A A 1996 Astrophys. J. 458 401
[43] Zhang D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
[4] Stancil P C, Lepp S and Dalgarno A 1996 Astrophys. J. 458 401
[44] Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
[5] Stancil P C and Dalgarno A 1997 Astrophys. J. 479 543
[45] Duan Z X, Li W L, Xu W W and Lv S J 2013 J. Chem. Phys. 139 094307
[6] Bougleux E and Galli D 1997 Mon. Not. R. Astron. Soc. 288 638
[46] Aoiz F J, Banares L and Herrero V J 1998 J. Chem. Soc. Faraday Trans. 94 2483
[7] Galli D and Palla F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R57
[47] Chen J W, Liu X G, Sun H Z and Zhang Q G 2011 Chin. Phys. Lett. 28 093101
[8] Lepp S, Stancil P C and Dalgarno A 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R57
[48] Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
[9] Bodo E Gianturco F A and Martinazzo R 2003 Phys. Rep. 384 85
[49] Xie T X, Zhang Y Y, Shi Y, Jin M X 2015 Chin. Phys. Lett. 32 098201
[10] Zhai H S and Yin S H 2012 Chin. Phys. B 21 128201
[50] Li W T, Yu W T and Yao M H 2018 Acta Phys. Sin. 67 103401 (in Chinese)
[11] Lee H S, Lee Y S and Jeung G H 1999 J. Phys. Chem. A 103 11080
[51] Polanyi J C 1959 J. Chem. Phys. 31 1338
[12] Dunne L J, Murrell J N and Jemmer P 2001 Chem. Phys. Lett. 336 1
[52] Polanyi J C and Tardy D C 1969 J. Chem. Phys. 51 5717
[13] Bodo E, Gianturco F A, Martinazzo R and Raimondi M 2001 Eur. Phys. J. D 15 321
[53] Kuntz P J, Nemeth E M, Polanyi J C, Rosner S D and Young C E 1966 J. Chem. Phys. 44 1168
[14] Kim K H, Lee Y S, Ishida T and Jeung G H 2003 J. Chem. Phys. 119 4689
[54] Martínez T, Hernández M L, Alvariño J M, Aoiz F J and Rábanos V S 2003 J. Chem. Phys. 119 7871
[15] Wernli M, Caruso D, Bodo E and Gianturco F A 2009 J. Phys. Chem. A 113 1121
[16] Prudente F V, Marques J M C and Maniero A M 2009 Chem. Phys. Lett. 474 18
[17] Clarke N J, Sironi M, Raimondi M, Kumar S, Gianturco F A, Buonomo E and Cooper D L 1998 Chem. Phys. 233 9
[18] Hsiao M, Lin K and Hung Y 2011 J. Chem. Phys. 134 034119
[19] Padmanaban R and Mahapatra S 2002 J. Chem. Phys. 117 6469
[20] Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 120 1746
[21] Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 121 7681
[22] Padmanaban R and Mahapatra S 2006 J. Phys. Chem. A 110 6039
[23] Defazio P, Petrongolo C, Gamallo P and González M 2005 J. Chem. Phys. 122 214303
[24] Yuan J C, He D and Chen M D 2015 Phys. Chem. Chem. Phys. 17 11732
[25] Bovino S, Wernli M and Gianturco F 2009 Astrophys. J. 699 383
[26] Bovino S, Tacconi M, Gianturco F A, Galli D and Palla F 2011 Astrophys. J. 731 107
[27] Roy T and Mahapatra S 2012 J. Chem. Phys. 136 174313
[28] Gómez-Carrasco S, González-Sánchez L, Bulut N, Roncero O, Bañares L and Castillo J F 2014 Astrophys. J. 784 55
[29] Zhai H S, Li W L and Liu Y F 2014 Bull. Korean Chem. Soc. 35 151
[30] He X H, Wu H, Zhang P Y and Zhang Y 2015 J. Phys. Chem. A 119 8912
[31] He X H, Zhang P Y and Duan Z X 2016 Comput. Theor. Chem. 1084 188
[32] Liu Y F, He X H, Shi D H and Sun J F 2011 Eur. Phys. J. D 61 349
[33] Liu Y F, He X H, Shi D H and Sun J F 2011 Comput. Theor. Chem. 965 107
[34] Wang Y L, Zhang J C, Jiang Y L, Wang K Zhou M Y and Liang X R 2012 Bull. Korean Chem. Soc. 33 2873
[35] Sha G Y, Yuan J C, Meng C G and Chen M D 2013 Chem. Res. Chin. Univ 29 956
[36] Jiang Z J, Wang M S, Yang C L and He D 2013 Chem. Phys. 415 8
[37] Jiang Z J, Wang M S, Yang C L and He D 2013 Comput. Theor. Chem. 1006 31
[38] Li D, Wang Y L, Wang J and Zhao Y T 2013 Int. J. Quantum Chem. 113 2379
[39] Wang Y L, Zhang J C, Tian B G, Wang K, Liang X R and Zhou M Y 2013 J. Theor. Comput. Chem. 12 1250093
[40] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[41] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[42] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[43] Zhang D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
[44] Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
[45] Duan Z X, Li W L, Xu W W and Lv S J 2013 J. Chem. Phys. 139 094307
[46] Aoiz F J, Banares L and Herrero V J 1998 J. Chem. Soc. Faraday Trans. 94 2483
[47] Chen J W, Liu X G, Sun H Z and Zhang Q G 2011 Chin. Phys. Lett. 28 093101
[48] Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
[49] Xie T X, Zhang Y Y, Shi Y, Jin M X 2015 Chin. Phys. Lett. 32 098201
[50] Li W T, Yu W T and Yao M H 2018 Acta Phys. Sin. 67 103401 (in Chinese)
[51] Polanyi J C 1959 J. Chem. Phys. 31 1338
[52] Polanyi J C and Tardy D C 1969 J. Chem. Phys. 51 5717
[53] Kuntz P J, Nemeth E M, Polanyi J C, Rosner S D and Young C E 1966 J. Chem. Phys. 44 1168
[54] Martínez T, Hernández M L, Alvariño J M, Aoiz F J and Rábanos V S 2003 J. Chem. Phys. 119 7871
[1] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[2] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[6] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[7] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[8] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[9] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[10] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[11] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
[12] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
[13] The reagent vibrational excitation effect on the stereodynamics of the reaction O(1D)+HBr→OH+Br
Zhang Ying-Ying (张莹莹), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(8): 083402.
[14] The stereodynamic properties of the F + HO (v, j)→HF + O reaction on the 1A' and 3A' potential energy surfaces by quasi-classical trajectory: Initial excitation effect (v =1-3, j = 0 and v = 0, j =1-3)
Zhao Dan (赵丹), Chu Tian-Shu (楚天舒), Hao Ce (郝策). Chin. Phys. B, 2013, 22(6): 063401.
[15] The effect of collision energy on the stereo-dynamics of the reaction H(2S)+NH(X3-, v=0, j=0)→N(4S)+H2
He Di (何缔), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Jiang Zhi-Jun (姜志军). Chin. Phys. B, 2013, 22(6): 068201.
No Suggested Reading articles found!