|
|
Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface |
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧) |
School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264001, China |
|
|
Abstract Quasi-classical trajectory (QCT) calculations are reported for the H+LiH (v=0-2, j=0)→Li+H2 reaction on a new ground electronic state global potential energy surface (PES) of the LiH2 system. Reaction probability and integral cross sections (ICSs) are calculated for collision energies in the range of 0 eV-0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism (i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections (PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore, the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.
|
Received: 05 March 2019
Revised: 19 May 2019
Accepted manuscript online:
|
PACS:
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.-w
|
(Chemical kinetics and dynamics)
|
|
Corresponding Authors:
Yu-Liang Wang
E-mail: yarmiay@163.com
|
Cite this article:
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧) Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface 2019 Chin. Phys. B 28 083402
|
[40] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[1] |
Maoli R, Melchiorri F and Tosti D 1994 Astrophys. J. 425 372
|
[41] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[2] |
Signore M, Vedrenne G, Debernardis P, Dubrovich V, Encrenaz P, Maoli R, Masi S, Mastrantonio G, Melchiorri B, Melchiorri F and Tanzilli P E 1994 Astrophys. J. Suppl. Ser. 92 535
|
[42] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[3] |
Dubrovich V K and Lipovka A A 1996 Astrophys. J. 458 401
|
[43] |
Zhang D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
|
[4] |
Stancil P C, Lepp S and Dalgarno A 1996 Astrophys. J. 458 401
|
[44] |
Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
|
[5] |
Stancil P C and Dalgarno A 1997 Astrophys. J. 479 543
|
[45] |
Duan Z X, Li W L, Xu W W and Lv S J 2013 J. Chem. Phys. 139 094307
|
[6] |
Bougleux E and Galli D 1997 Mon. Not. R. Astron. Soc. 288 638
|
[46] |
Aoiz F J, Banares L and Herrero V J 1998 J. Chem. Soc. Faraday Trans. 94 2483
|
[7] |
Galli D and Palla F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R57
|
[47] |
Chen J W, Liu X G, Sun H Z and Zhang Q G 2011 Chin. Phys. Lett. 28 093101
|
[8] |
Lepp S, Stancil P C and Dalgarno A 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R57
|
[48] |
Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
|
[9] |
Bodo E Gianturco F A and Martinazzo R 2003 Phys. Rep. 384 85
|
[49] |
Xie T X, Zhang Y Y, Shi Y, Jin M X 2015 Chin. Phys. Lett. 32 098201
|
[10] |
Zhai H S and Yin S H 2012 Chin. Phys. B 21 128201
|
[50] |
Li W T, Yu W T and Yao M H 2018 Acta Phys. Sin. 67 103401 (in Chinese)
|
[11] |
Lee H S, Lee Y S and Jeung G H 1999 J. Phys. Chem. A 103 11080
|
[51] |
Polanyi J C 1959 J. Chem. Phys. 31 1338
|
[12] |
Dunne L J, Murrell J N and Jemmer P 2001 Chem. Phys. Lett. 336 1
|
[52] |
Polanyi J C and Tardy D C 1969 J. Chem. Phys. 51 5717
|
[13] |
Bodo E, Gianturco F A, Martinazzo R and Raimondi M 2001 Eur. Phys. J. D 15 321
|
[53] |
Kuntz P J, Nemeth E M, Polanyi J C, Rosner S D and Young C E 1966 J. Chem. Phys. 44 1168
|
[14] |
Kim K H, Lee Y S, Ishida T and Jeung G H 2003 J. Chem. Phys. 119 4689
|
[54] |
Martínez T, Hernández M L, Alvariño J M, Aoiz F J and Rábanos V S 2003 J. Chem. Phys. 119 7871
|
[15] |
Wernli M, Caruso D, Bodo E and Gianturco F A 2009 J. Phys. Chem. A 113 1121
|
[16] |
Prudente F V, Marques J M C and Maniero A M 2009 Chem. Phys. Lett. 474 18
|
[17] |
Clarke N J, Sironi M, Raimondi M, Kumar S, Gianturco F A, Buonomo E and Cooper D L 1998 Chem. Phys. 233 9
|
[18] |
Hsiao M, Lin K and Hung Y 2011 J. Chem. Phys. 134 034119
|
[19] |
Padmanaban R and Mahapatra S 2002 J. Chem. Phys. 117 6469
|
[20] |
Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 120 1746
|
[21] |
Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 121 7681
|
[22] |
Padmanaban R and Mahapatra S 2006 J. Phys. Chem. A 110 6039
|
[23] |
Defazio P, Petrongolo C, Gamallo P and González M 2005 J. Chem. Phys. 122 214303
|
[24] |
Yuan J C, He D and Chen M D 2015 Phys. Chem. Chem. Phys. 17 11732
|
[25] |
Bovino S, Wernli M and Gianturco F 2009 Astrophys. J. 699 383
|
[26] |
Bovino S, Tacconi M, Gianturco F A, Galli D and Palla F 2011 Astrophys. J. 731 107
|
[27] |
Roy T and Mahapatra S 2012 J. Chem. Phys. 136 174313
|
[28] |
Gómez-Carrasco S, González-Sánchez L, Bulut N, Roncero O, Bañares L and Castillo J F 2014 Astrophys. J. 784 55
|
[29] |
Zhai H S, Li W L and Liu Y F 2014 Bull. Korean Chem. Soc. 35 151
|
[30] |
He X H, Wu H, Zhang P Y and Zhang Y 2015 J. Phys. Chem. A 119 8912
|
[31] |
He X H, Zhang P Y and Duan Z X 2016 Comput. Theor. Chem. 1084 188
|
[32] |
Liu Y F, He X H, Shi D H and Sun J F 2011 Eur. Phys. J. D 61 349
|
[33] |
Liu Y F, He X H, Shi D H and Sun J F 2011 Comput. Theor. Chem. 965 107
|
[34] |
Wang Y L, Zhang J C, Jiang Y L, Wang K Zhou M Y and Liang X R 2012 Bull. Korean Chem. Soc. 33 2873
|
[35] |
Sha G Y, Yuan J C, Meng C G and Chen M D 2013 Chem. Res. Chin. Univ 29 956
|
[36] |
Jiang Z J, Wang M S, Yang C L and He D 2013 Chem. Phys. 415 8
|
[37] |
Jiang Z J, Wang M S, Yang C L and He D 2013 Comput. Theor. Chem. 1006 31
|
[38] |
Li D, Wang Y L, Wang J and Zhao Y T 2013 Int. J. Quantum Chem. 113 2379
|
[39] |
Wang Y L, Zhang J C, Tian B G, Wang K, Liang X R and Zhou M Y 2013 J. Theor. Comput. Chem. 12 1250093
|
[40] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[41] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[42] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[43] |
Zhang D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
|
[44] |
Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
|
[45] |
Duan Z X, Li W L, Xu W W and Lv S J 2013 J. Chem. Phys. 139 094307
|
[46] |
Aoiz F J, Banares L and Herrero V J 1998 J. Chem. Soc. Faraday Trans. 94 2483
|
[47] |
Chen J W, Liu X G, Sun H Z and Zhang Q G 2011 Chin. Phys. Lett. 28 093101
|
[48] |
Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
|
[49] |
Xie T X, Zhang Y Y, Shi Y, Jin M X 2015 Chin. Phys. Lett. 32 098201
|
[50] |
Li W T, Yu W T and Yao M H 2018 Acta Phys. Sin. 67 103401 (in Chinese)
|
[51] |
Polanyi J C 1959 J. Chem. Phys. 31 1338
|
[52] |
Polanyi J C and Tardy D C 1969 J. Chem. Phys. 51 5717
|
[53] |
Kuntz P J, Nemeth E M, Polanyi J C, Rosner S D and Young C E 1966 J. Chem. Phys. 44 1168
|
[54] |
Martínez T, Hernández M L, Alvariño J M, Aoiz F J and Rábanos V S 2003 J. Chem. Phys. 119 7871
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|