|
|
Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations |
Li Yong-Qing (李永庆)a b, Zhang Yong-Jia (张永嘉)a, Zhao Jin-Feng (赵金峰)a b, Zhao Mei-Yu (赵美玉)c, Ding Yong (丁勇)a |
a Department of Physics, Liaoning University, Shenyang 110036, China; b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; c Institute of Theoretical Simulation Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China |
|
|
Abstract Vector correlations of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S)are studied based on a recent DMBESEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range (10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr,φr).
|
Received: 20 April 2015
Revised: 18 June 2015
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001). |
Corresponding Authors:
Li Yong-Qing, Zhao Mei-Yu, Ding Yong
E-mail: yqli@lnu.edu.cn;myzhao@hit.edu.cn;yongding@lnu.edu.cn
|
Cite this article:
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇) Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations 2015 Chin. Phys. B 24 113402
|
[1] |
Umemoto H, Asai T and Kimura Y;1997 J. Chem. Phys. 106 4985
|
[2] |
Alagia M, Balucani N, Cartechini L, Cachavecchia P, Volpi G G, Pederson L A, Schatz G C, Lendvay G, Harding L B, Hollebeek T, Ho T S and Rabitz H;1999 J. Chem. Phys. 110 8857
|
[3] |
Dodd J A, Lipson S J, Flanagan D J, Blumberg W A M, Pearson J C and Green B D;1991 J. Chem. Phys. 94 4301
|
[4] |
Umemoto H and Matsumoto K;1996 J. Chem. Phys. 104 9640
|
[5] |
Li Y Q and Varandas A J C;2010 J. Phys. Chem. A 114 9644
|
[6] |
Takayanagui T, Kobayashi H and Tsunashima S;1996 J. Chem. Soc. Faraday Trans. 92 1311
|
[7] |
Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 6669
|
[8] |
Pederson L, Schatz G, Hollebeek T, Ho T S, Rabitz H and Harding L B;2000 J. Phys. Chem. A 104 2301
|
[9] |
Li Y Q, Ma F C and Sun M T;2013 J. Chem. Phys. 139 154305
|
[10] |
Jensen P, Buenker R J, Hirsch G and Rai S N;1990 Mol. Phys. 70 443
|
[11] |
Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C;2012 J. Chem. Phys. 136 194705
|
[12] |
Funken K, Engels B, Peyerimhoff S D, Grein F;1990 Chem. Phys. Lett. 172 180
|
[13] |
Chu T S, Han K L 2005 J. Phys. Chem. A 109 2050
|
[14] |
Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
|
[15] |
Chu T S, Zhang Y and Han K L;2006 Int. Rev. Phys. Chem. 25 201
|
[16] |
Chu T S and Han K L;2008 Phys. Chem. Chem. Phys. 10 2431
|
[17] |
Suzuki T, Shihira Y, Sato T, Umemoto H and Tsunashima S;1993 J. Chem. Soc. Faraday Trans. 89 995
|
[18] |
Buenker R J, Peric M, Peyerimhoff S D and Marian R;1981 Mol. Phys. 43 987
|
[19] |
Li Y Q, Yuan J C, Chen M D, Ma F C and Sun M T;2013 J. Comput. Chem. 34 1686
|
[20] |
Pederson L A, Schatz G C, Ho T, Hollebeek T, Rabitz H and Harding L B;1999 J. Chem. Phys. 110 9091
|
[21] |
Chu T S, Lu R F, Han K L, Tang X N, Xu H F and Ng C Y;2005 J. Chem. Phys. 122 244322
|
[22] |
Brandi R, Leonardi E and Petrongolo C;1997 J. Phys. Chem. A 101 5696
|
[23] |
Peyerimhoff S D and Buenker R J;1979 Can. J. Chem. 57 3182
|
[24] |
Rodrigues S P J, Fontes A C G, Li Y Q and Varandas A J C;2011 Chem. Phys. Lett. 516 17
|
[25] |
Adam L, Hack W, McBane G C, Zhu H, Qu Z W and Schinke R;2007 J. Chem. Phys. 126 034304
|
[26] |
Qu Z, Zhu H, Schinke R, Adam L and Hack W;2005 J. Chem. Phys. 122 204313
|
[27] |
Vetter R, Zülicke L, Koch A, van Dishoeck E F and Peyerimhoff S D;1996 J. Chem. Phys. 104 5558
|
[28] |
Zhou S L, Xie D, Lin S Y and Guo H;2008 J. Chem. Phys. 128 224316
|
[29] |
Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 404
|
[30] |
Bella S and Schaefer III H F 1977 J. Chem. Phys. 67 5173
|
[31] |
Li X, Wang M, Pino I, Yang C and Ma L 2009 Phys. Chem. Chem. Phys. 11 10438
|
[32] |
Li X, Wang M, Pino I, Yang C and Wu J 2010 Phys. Chem. Chem. Phys. 12 7942
|
[33] |
Liu L S and Shi Y 2011 Chin. Phys. B 20 013404
|
[34] |
Li Y Q, Zhao J F, Zhang Y J, Chi X L, Ding Y and Ma F C 2014 Chin. Phys. B 23 123401
|
[35] |
Ma J J, Zou Y and Liu H T 2013 Chin. Phys. B 22 063402
|
[36] |
Zhao D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
|
[37] |
Yu Y J and Xiu Q 2011 Chin. Phys. B 20 123402
|
[38] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[39] |
Wei Q 2014 Chin. Phys. B 23 023401
|
[40] |
Yue X F 2013 Chin. Phys. B 22 113401
|
[41] |
Chi X L, Zhao J F, Zhang Y J, Ma F C and Li Y Q 2015 Chin. Phys. B 24 053401
|
[42] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
[43] |
Wang Y P, Zhao M Y and Yao S H 2013 Chin. Phys. B 22 128201
|
[44] |
Wei L, Zhou H W and Zhang L 2013 Chin. Phys. B 22 096201
|
[45] |
Pederson L A, Schatz G C, Ho T, Hollebeek T, Rabitz H and Harding L B 2000 J. Phys. Chem. A 104 2301
|
[46] |
Fitzcharles M S and Schatz G C 1986 J. Phys. Chem. 90 3634
|
[47] |
Varandas A J C, Voronin A I, Riganelli A and Caridade P J S B 1997 Chem. Phys. Lett. 278 325
|
[48] |
Pino I, Martinazzob R and Tantardini G F 2008 Phys. Chem. Chem. Phys. 10 5545
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|