INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization |
Zhang Ying-Ying (张莹莹)a b, Xie Ting-Xian (解廷献)c, Li Ze-Rui (李泽瑞)a b, Shi Ying (石英)a b, Jin Ming-Xing (金明星)a b |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China; c Department of Physics, Dalian Jiaotong University, Dalian 116028, China |
|
|
Abstract A quasi-classical trajectory (QCT) calculation is used to investigate the vector and scalar properties of the D+BrO→DBr+O reaction based on an ab initio potential energy surface (X1A' state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region (T < 100K). Meanwhile, three product angular distributions P(θr), P(ør), and P(θr,ør) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections (PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.
|
Received: 19 September 2014
Revised: 21 October 2014
Accepted manuscript online:
|
PACS:
|
82.20.Pm
|
(Rate constants, reaction cross sections, and activation energies)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for the International Thermonuclear Experimental Reactor (ITER) (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069). |
Corresponding Authors:
Xie Ting-Xian, Shi Ying
E-mail: xietingx@djtu.edu.cn;shi_ying@jlu.edu.cn
|
Cite this article:
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星) Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization 2015 Chin. Phys. B 24 038201
|
[1] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[2] |
Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
[3] |
Aguado A, Suárez C and M. Paniagua 1995 Chem. Phys. 201 107
|
[4] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[5] |
Skokov S, Peterson K A and Bowman J M 1998 J. Chem. Phys. 109 2662
|
[6] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[7] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[8] |
Shi Y, Xie T X and Jin M X 2011 Chin. J. Chem. Phys. 24 373
|
[9] |
Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
|
[10] |
Xie T X 2012 J. Theor. Comput. Chem. 11 561
|
[11] |
Wine P H, Wells J R and Ravishankara A R 1986 J. Chem. Phys. 84 1349
|
[12] |
Orphal J, Kou Q, Tchana F K, Pirali O and Flaud J M 2003 J. Mol. Spectrosc. 221 239
|
[13] |
Cronkhite J M and Wine P H 1998 Int. J. Chem. Kinet. 30 555
|
[14] |
Zhang Y Y, Shi Y, Xie T X, Jin M X and Hu Z 2013 Chin. Phys. B 22 083402
|
[15] |
Li H, Zheng B, Yin J Q and Meng Q T 2012 J. At. Mol. Sci. 3 114
|
[16] |
Koga K, Takeo H, Kondo S, Sugie M, Matsumura C, McRae G A and Cohen E A 1989 J. Mol. Spectrosc. 138 467
|
[17] |
Brown R D H and Smith I W M 1975 Int. J. Chem. Kinet. 7 301
|
[18] |
McKendrick K G, Rakestraw D J, Zhang R and Zare R N 1988 J. Phys. Chem. 92 5530
|
[19] |
Balucani N, Beneventi L, Casavecchia P, Volpi G G, Kruss E J and Sloan J J 1994 Can. J. Chem. 72 888
|
[20] |
Peterson K A 2000 J. Chem. Phys. 113 4598
|
[21] |
Tang B Y, Tang Q K, Chen M D, Han K L and Zhang J Z H 2004 J. Chem. Phys. 120 8537
|
[22] |
Xie T X, Zhang Y Y, Shi Y, Li Z R and Jin M X Chin. Phys. B (Accepted)
|
[23] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[24] |
Zhang L, Chen M D, Wang M L and Han K L 2000 J. Chem. Phys. 112 3710
|
[25] |
Yue X F 2010 Chin. Phys. B 19 043401
|
[26] |
Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 348 97
|
[27] |
Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Chem. Phys. Phys. Chem. 11 1043
|
[28] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[29] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[30] |
Zhao L, Sun P and Liu C Z 2011 Chin. Phys. Lett. 28 083101
|
[31] |
Chen Y Y and Zhao M Y 2012 J. Theor. Comput.Chem. 11 87
|
[32] |
Zhao D, He X H and Guo W 2014 Can. J. Chem. 92 250
|
[33] |
Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
|
[34] |
Gao S B, Wei W, Zheng B, Song Y Z and Meng Q T 2014 Int. J. Quan. Chem. 114 748
|
[35] |
Hankel M and Yue X F 2012 Comput. Theor. Chem. 990 23
|
[36] |
Liu R Z, Ding Y J, Wen C Y, Li J F, Zhong M W and Shi Y 2011 J. Theor. Comput.Chem. 10 447
|
[37] |
Aoiz F J, Ba nares L and Castillo J F 1999 J. Chem. Phys. 111 4013
|
[38] |
Tang B Y, Yang B H, Han K L, Zhang R Q and Zhang J Z H 2000 J. Chem. Phys. 113 10105
|
[39] |
Wu T, Werner H J and Manthe U 2006 J. Chem. Phys. 124 164307
|
[40] |
Wang Y P, Zhao M Y, Yao S H, Song P and Ma F C 2013 Chin. Phys. B 22 128201
|
[41] |
Duan Z X, Qiu M H and Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)
|
[42] |
Liu S L and Shi Y 2010 Chin. Phys. Lett. 27 123103
|
[43] |
Yue X F 2013 Chin. Phys. B 22 113401
|
[44] |
Lin S Y and Guo H 2006 J. Chem. Phys. 124 031101
|
[45] |
Defazio P, Gamallo P, González M, Akpinar S, Bussery-Honvault B, Honvault P and Petrongolo C 2010 J. Chem. Phys. 132 104306
|
[46] |
Padmanaban R and Mahapatra S 2004 J. Chem. Phys. 121 7681
|
[47] |
Xu C X, Xie D Q, Honvault P, Lin S Y and Guo H 2007 J. Chem. Phys. 127 024304
|
[48] |
Jorfi M, Honvault P, Halvick P, Lin S Y and Guo H 2008 Chem. Phys. Lett. 462 53
|
[49] |
Jorfi M, Honvault P and Halvick P 2009 Chem. Phys. Lett. 471 65
|
[50] |
Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
|
[51] |
Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
|
[52] |
Zhu T, Hu G D and Zhang Q G 2010 J. Mol. Struc. 948 36
|
[53] |
Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|