Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 123401    DOI: 10.1088/1674-1056/23/12/123401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of stereodynamics for the N+H2/D2/T2 reactions

Li Yong-Qing (李永庆)a b, Zhao Jin-Feng (赵金峰)a, Zhang Yong-Jia (张永嘉)a, Chi Xiao-Lin (迟晓琳)a, Ding Yong (丁勇)a, Ma Feng-Cai (马凤才)a
a Department of Physics, Liaoning University, Shenyang 110036, China;
b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  The effects of isotopic variants on stereodynamic properties for the title reactions have been investigated using a quasi-classical trajectory method based on the first excited state NH2(12A') potential energy surface [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644]. The forward–backward symmetry scattering of the differential cross section can be observed, which demonstrates that all these reactions follow the insertion mechanism. Three angle distribution functions P(θr), P(φr), and P(θr, φr) with different collision energies and target molecules H2 /D2 /T2 are calculated. It is shown that the product rotational angular momentum is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The title reaction is mainly governed by the “in-plane” mechanism through the calculated distribution function P(θr, φr). The observable influences on the rotational polarization of the product by the isotopic substitution of H/D/T can be demonstrated.
Keywords:  quasi-classical trajectory method      stereodynamics      potential energy surface      product polarization  
Received:  13 May 2014      Revised:  17 July 2014      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  34.50.-s (Scattering of atoms and molecules)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and 11274149), the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology, China (Grant No. F12-254-1-00), the Scientific Research Foundation for Doctors of Liaoning University, the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158), and the Program for Liaoning Excellent Talents in University (Grant No. LJQ2014001).
Corresponding Authors:  Li Yong-Qing, Ding Yong     E-mail:  yqli@lnu.edu.cn;yongding@lnu.edu.cn

Cite this article: 

Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才) Theoretical study of stereodynamics for the N+H2/D2/T2 reactions 2014 Chin. Phys. B 23 123401

[1]Bozzelli J W and Dean A M 1995 Int. J. Chem. Kinet. 27 1097
[2]Tomeczek J and Gradon B 2003 Combust. Flame 133 311
[3]Woodall J, Agundez M, Markwick-Kemper A J and Millar T J 2007 Astron. Astrophys. 466 1197
[4]Hellman A, Baerends E J, Biczysko M, Bligaard T, Christensen C H, Clary D C, Dahl S, Van Harrevelt R, Honkala K, Jonsson H, Kroes G J, Luppi M, Manthe U, Norskov J K, Olsen R A, Rossmeisl J, Skulason E, Tautermann C S, Varandas A J C and Vincent J K 2006 J. Phys. Chem. B 110 17719
[5]Miller J A and Bowman C T 1989 Prog. Energy Combust. Sci. 15 287
[6]Hughes K J, Tomlin A S, Hampartsoumian E, Nimmo W, Zsely I G, Ujvari M and Turanyi T 2001 Combust. Flame 124 573
[7]Hayhurst A N and Hutchinson E M 1998 Combust. Flame 114 274
[8]Balucani N, Alagia M, Cartechini L, Casavecchia P, Volpi G G, Pederson L A and Schatz G C 2001 J. Phys. Chem. A 105 2414
[9]Umemoto H and Matsumoto K 1996 J. Chem. Phys. 104 9640
[10]Balucani N, Casavecchia P, Banares L, Aoiz F J, Gonzalez-Lezana T, Honvault P and Launay J M 2006 J. Phys. Chem. A 110 817
[11]Umemoto H, Asai T and Kimura Y 1997 J. Chem. Phys. 106 4985
[12]Balucani N, Cartechini L, Capozza G, Segoloni E, Casavecchia P, Volpi G G, Aoiz F J, Banares L, Honvault P and Launay J M 2002 Phys. Rev. Lett. 89 013201
[13]Umemoto H, Terada N and Tanaka K 2000 J. Chem. Phys. 112 5762
[14]Rao B J and Mahapatra S 2007 J. Chem. Phys. 127 244307
[15]Honvault P and Launay J M 1999 J. Chem. Phys. 111 6665
[16]Pederson L A, Schatz G C, Ho T S, Hollebeek T, Rabitz H, Harding L B and Lendvay G 1999 J. Chem. Phys. 110 9091
[17]Ho T S, Rabitz H, Aoiz F J, Banares L, Vázquez S A and Harding L B 2003 J. Chem. Phys. 119 3063
[18]Lin S Y, Banares L and Guo H 2007 J. Phys. Chem. A 111 2376
[19]Defazio P and Petrongolo C 2006 J. Chem. Phys. 125 064308
[20]Defazio P and Petrongolo C 2007 J. Chem. Phys. 127 204311
[21]Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
[22]Lin S Y and Guo H 2006 J. Chem. Phys. 124 031101
[23]Castillo J F, Bulut N, Banares L and Gogtas F 2007 Chem. Phys. 332 119
[24]Chu T S, Duan Y B, Yuan S P and Varandas A J C 2007 Chem. Phys. Lett. 444 351
[25]Alagia M, Balucant N, Cartechini L, Casavecchia P, Volpi G G, Pederson L A and Schatz G C 1999 J. Chem. Phys. 110 8857
[26]Dodd J A, Lipson S J, Flanagan D J, Blumberg W A M, Person J C and Green B D 1991 J. Chem. Phys. 94 4301
[27]Suzuki T, Shihia Y, Sato T, Umemoto H and Tsunashima S 1993 J. Chem. Soc., Faraday Trans. 89 995
[28]Kobayashi H, Takayangagi T and Tsunashima S 1997 Chem. Phys. Lett. 277 20
[29]Kobayashi H, Takayangagi T, Yokoyama K, Sato T and Tsunashima S 1995 J. Chem. Soc., Faraday Trans. 91 3771
[30]Pederson L A, Schatz G C, Ho T, Hollebeek T, Rabitz H and Harding L B 2000 J. Phys. Chem. A 104 2301
[31]Akpinar S, Defazio P, Gamallo P and Petrongolo C 2008 J. Chem. Phys. 129 174307
[32]Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644
[33]Liu L S and Shi Y 2011 Chin. Phys. B 20 013404
[34]Yao C X and Zhao G J 2013 Chin. Phys. B 22 083403
[35]Ma J J, Zou Y and Liu H T 2013 Chin. Phys. B 22 063402
[36]Zhao D, Chu T S and Hao C 2013 Chin. Phys. B 22 063401
[37]Yu Y J and Xiu Q 2011 Chin. Phys. B 20 123402
[38]Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[39]Wei Q 2014 Chin. Phys. B 23 023401
[40]Yue X F 2013 Chin. Phys. B 22 113401
[41]Sha G Y, Yuan J C and Meng C G 2014 Chin. Phys. B 23 018202
[42]Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[43]Wang Y P, Zhao M Y and Yao S H 2013 Chin. Phys. B 22 128201
[44]Tong H, Yang Y B and Shi Z Y 2013 Acta Phys. Sin. 62 132101 (in Chinese)
[45]Wei L, Zhou H W and Zhang L 2013 Chin. Phys. B 22 096201
[46]Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[47]Chen M D, Han K L and Lou N Q 2003 J. Phys. Chem. 118 4463
[48]Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[49]Orr-Ewing A J and Zare R N 1994 Ann. Rev. Phys. Chem. 45 315
[50]Li Y Q and Varandas A J C 2012 Int. J. Quantum Chem. 112 2932
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[3] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[4] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[5] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[6] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[7] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[8] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[9] Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation
Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2016, 25(5): 053101.
[10] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[11] Catalytic reduction of N2O by CO over PtlAum- clusters:A first-principles study
Mi Hong (米鸿), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅), Pan Xiao-Yin (潘孝胤). Chin. Phys. B, 2015, 24(9): 098201.
[12] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(6): 063101.
[13] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[14] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[15] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
No Suggested Reading articles found!