|
|
Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction |
Zhang Ying-Ying (张莹莹)a, Li Shu-Juan (李淑娟)a, Shi Ying (石英)a, Xie Ting-Xian (解廷献)b, Jin Ming-Xing (金明星)a |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; b Department of Physics, Dalian Jiaotong University, Dalian 116028, China |
|
|
Abstract In this paper, the stereodynamics of Li+DF→LiF+D reaction is investigated by the quasi-classical trajectory (QCT) method on the 2A' potential energy surface (PES) at a relatively low collision energy of 8.76 kcal/mol. The scalar properties of the title reaction such as reaction probability and cross section are studied with vibrational quantum number of v=1-6. The product angular distributions P(θr) and P(ør) are presented in the same vibrational level range. Moreover, two polarization-dependent generalized differential cross sections (PDDCSs), i.e., the PDDCS00 and PDDCS22+ are calculated as well. These stereodynamical results demonstrate sensitive behaviors to the vibrational quantum numbers.
|
Received: 25 March 2014
Revised: 03 July 2014
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the Fund from the Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for the International Thermonuclear Experimental Reactor (ITER) (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069). |
Corresponding Authors:
Shi Ying, Xie Ting-Xian
E-mail: shi_ying@jlu.edu.cn;xietingx@djtu.edu.cn
|
Cite this article:
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星) Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction 2014 Chin. Phys. B 23 123402
|
|
| [1] | Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 99 9598
|
|
| [2] | Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
|
| [3] | Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
|
| [4] | Miranda M P D, Clary D C, Castillo J F and Manolopoulos D E 1998 J. Chem. Phys. 108 3142
|
|
| [5] | Jorfi M, Honvault P, Halvick P, Lin S Y and Guo H 2008 Chem. Phys. Lett. 462 53
|
|
| [6] | Liu Y F, Gao Y L, Zhai H S, Shi D H and Sun J F 2009 Int. J. Mol. Sci. 10 2146
|
|
| [7] | Lu R F, Wang Y H and Deng K M 2013 J. Comput. Chem. 34 1735
|
|
| [8] | Pruett J G and Zare R N 1976 J. Chem. Phys. 64 1774
|
|
| [9] | Karny Z and Zare R N 1978 J. Chem. Phys. 68 3360
|
|
| [10] | Parker G A, Laganá A, Crocchianti S and Pack R T 1995 J. Chem. Phys. 102 1238
|
|
| [11] | Aoiz F J, Martínez M T, Menéndez M, Sáez-Rábanos V and Verdasco E 1999 Chem. Phys. Lett. 299 25
|
|
| [12] | Aoiz F J, Martínez M T, Menéndez M and Sáez-Rábanos V 2001 J. Chem. Phys. 114 8880
|
|
| [13] | Lara M, Aguado A, Paniagua M and Roncero O 2000 J. Chem. Phys. 113 1781
|
|
| [14] | Weck P F and Balakrishnan N 2005 J. Chem. Phys. 122 154309
|
|
| [15] | Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
|
|
| [16] | Hobel O, Bobbenkamp R, Paladini A, Russo A and Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198
|
|
| [17] | Hudson A J, Oh H B, Polanyi J C and Piecuch P 2000 J. Chem. Phys. 113 9897
|
|
| [18] | Aguado A and Paniagua M 1997 J. Chem. Phys. 106 1013
|
|
| [19] | Yuan M H and Zhao G J 2009 J. Mol. Struc. Theochem. 916 23
|
|
| [20] | Cheng J and Yue X F 2011 Chin. Phys. Lett. 28 083102
|
|
| [21] | Tan R S, Liu X G and Hu M 2012 Chin. Phys. Lett. 29 123101
|
|
| [22] | Loesch H J, Stenzel S and Wüstenbecker B 1991 J. Chem. Phys. 95 3841
|
|
| [23] | Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
|
| [24] | Cohen E A, McRae G A, Tan T L, Friedl R R, Johns J W C and Noel M 1995 J. Mol. Spectrosc. 173 55
|
|
| [25] | Cronkhite J M and Wine P H 1998 Int. J. Chem. Kinet. 30 555
|
|
| [26] | Brouard M, Lambert H M, Rayner S P and Simons J P 1996 Mol. Phys. 89 403
|
|
| [27] | Balucani N, Beneventi L, Casavecchia P, Volpi G G, Kruss E J and Sloan J J 1994 Can. J. Chem. 72 888
|
|
| [28] | Hobel O, Paladini A, Russo A, Bobbenkamp R and Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198
|
|
| [29] | Parson J M and Lee Y T 1972 J. Chem. Phys. 56 4658
|
|
| [30] | Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
|
|
| [31] | Neumark D M, Wodtke A M, Robinson G N, Hayden C C and Lee Y T 1985 J. Chem. Phys. 82 3067
|
|
| [32] | Bradforth S E, Arnold D W, Neumark D M and Manolopoulos D E 1993 J. Chem. Phys. 99 6345
|
|
| [33] | Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
|
| [34] | Cai M Q, Zhang L, Tang B Y, Chen M D, Yang G W and Han K L 2000 Chem. Phys. 255 283
|
|
| [35] | Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
|
| [36] | Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
|
| [37] | Chen M D, Tang B Y, Han K L, Lou N Q and Zhang J Z H 2003 J. Chem. Phys. 118 4463
|
|
| [38] | Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
|
|
| [39] | Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
|
| [40] | Li S J, Shi Y, Xie T X and Jin M X 2012 Chin. Phys. B 21 013401
|
|
| [41] | Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
|
| [42] | Zhang Y Y, Shi Y, Xie T X, Jin M X and Hu Z 2013 Chin. Phys. B 22 083402
|
|
| [43] | Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
|
|
| [44] | Liu S L and Shi Y 2010 Chin. Phys. Lett. 27 123103
|
|
| [45] | Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P and Duan Y B 2011 Chin. Phys. Lett. 28 093403
|
|
| [46] | Yao C X and Zhao G J 2013 Can. J. Chem. 91 387
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|