Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 023401    DOI: 10.1088/1674-1056/23/2/023401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction

Wei Qiang (魏强)
Department of Applied Physics, Chongqing University of Technology, Chongqing 400050, China
Abstract  The stereodynamics and reaction mechanism of the H’(2S)+NH(X3-→N(4S) +H2 reaction are thoroughly studied at collision energies in the 0.1 eV–1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A" potential energy surface (PES). The distributions of vector correlations between products and reagents P(θr), i>P(φr) and P(θr, φr) are presented and discussed. The results indicate that product rotational angular momentum j’ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product H2 are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.
Keywords:  quasiclassical trajectory      H’+NH reaction      stereodynamics      mechanism  
Received:  06 April 2013      Revised:  08 May 2013      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.50.-s (Scattering of atoms and molecules)  
  34.50.Lf (Chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204392 and 11047125).
Corresponding Authors:  Wei Qiang     E-mail:  qiangwei@cqut.edu.cn
About author:  34.10.+x; 34.50.-s; 34.50.lf

Cite this article: 

Wei Qiang (魏强) Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction 2014 Chin. Phys. B 23 023401

[1] Bernstein R B, Herschbach D R and Levine R D 1987 J. Phys. Chem. 91 5365
[2] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
[3] Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
[4] Vallance C 2011 Phys. Chem. Chem. Phys. 13 14427
[5] Han K L, He G Z and Lou N Q 1993 Chin. Phys. Lett. 10 517
[6] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[7] De Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509
[8] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[9] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[10] Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
[11] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[12] Garcia J E 2007 J. Phys. Chem. A 111 5792
[13] Czakó G and Bowman J M 2009 J. Chem. Phys. 131 244302
[14] Miller J A and Bowman C T 1989 Energy Combust. Sci. 15 287
[15] Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A and Chen C X 1990 J. Chem. Phys. 93 8703
[16] Davidson D F and Hanson R K 1990 Int. J. Chem. Kin. 22 843
[17] Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
[18] Xu Z F, Fang D C and Fu X Y 1997 J. Phys. Chem. A 101 4432
[19] Zhai H S and Zhou P W 2012 Chin. Phys. Lett. 29 063401
[20] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[21] Pascual R, Schatz G C, Lendvay G and Troya D 2002 J. Phys. Chem. A 106 4125
[22] Jordan M J T, Thompson K C and Collins M A 1995 J. Chem. Phys. 102 5647
[23] Poveda L A and Varandas A J C 2006 Theor. Chem. Acc. 116 404
[24] Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
[25] Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[26] Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
[27] Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
[28] Yue X F 2012 Chin. Phys. B 21 073401
[29] Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
[30] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[31] Chu T S 2009 J. Comput. Chem. 31 1385
[32] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[33] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[34] Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commn. Comput. Chem. 1 15
[35] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
[36] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[37] Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[38] Li R J, Han K L, Li F E, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[39] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[40] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[41] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323
[42] Ding Y J and Shi Y 2011 Comput. Theor. Chem. 963 306
[43] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
[1] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[4] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[5] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[6] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[7] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[10] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[11] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[12] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[13] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
No Suggested Reading articles found!