|
|
Stereodynamics study of the H’(2S)+NH(X3∑-→N(4S) +H2 reaction |
Wei Qiang (魏强) |
Department of Applied Physics, Chongqing University of Technology, Chongqing 400050, China |
|
|
Abstract The stereodynamics and reaction mechanism of the H’(2S)+NH(X3∑-→N(4S) +H2 reaction are thoroughly studied at collision energies in the 0.1 eV–1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A" potential energy surface (PES). The distributions of vector correlations between products and reagents P(θr), i>P(φr) and P(θr, φr) are presented and discussed. The results indicate that product rotational angular momentum j’ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product H2 are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.
|
Received: 06 April 2013
Revised: 08 May 2013
Accepted manuscript online:
|
PACS:
|
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204392 and 11047125). |
Corresponding Authors:
Wei Qiang
E-mail: qiangwei@cqut.edu.cn
|
About author: 34.10.+x; 34.50.-s; 34.50.lf |
Cite this article:
Wei Qiang (魏强) Stereodynamics study of the H’(2S)+NH(X3∑-→N(4S) +H2 reaction 2014 Chin. Phys. B 23 023401
|
[1] |
Bernstein R B, Herschbach D R and Levine R D 1987 J. Phys. Chem. 91 5365
|
[2] |
Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
|
[3] |
Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
|
[4] |
Vallance C 2011 Phys. Chem. Chem. Phys. 13 14427
|
[5] |
Han K L, He G Z and Lou N Q 1993 Chin. Phys. Lett. 10 517
|
[6] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[7] |
De Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509
|
[8] |
Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
|
[9] |
Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
|
[10] |
Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
|
[11] |
Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
|
[12] |
Garcia J E 2007 J. Phys. Chem. A 111 5792
|
[13] |
Czakó G and Bowman J M 2009 J. Chem. Phys. 131 244302
|
[14] |
Miller J A and Bowman C T 1989 Energy Combust. Sci. 15 287
|
[15] |
Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A and Chen C X 1990 J. Chem. Phys. 93 8703
|
[16] |
Davidson D F and Hanson R K 1990 Int. J. Chem. Kin. 22 843
|
[17] |
Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
|
[18] |
Xu Z F, Fang D C and Fu X Y 1997 J. Phys. Chem. A 101 4432
|
[19] |
Zhai H S and Zhou P W 2012 Chin. Phys. Lett. 29 063401
|
[20] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[21] |
Pascual R, Schatz G C, Lendvay G and Troya D 2002 J. Phys. Chem. A 106 4125
|
[22] |
Jordan M J T, Thompson K C and Collins M A 1995 J. Chem. Phys. 102 5647
|
[23] |
Poveda L A and Varandas A J C 2006 Theor. Chem. Acc. 116 404
|
[24] |
Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
|
[25] |
Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
|
[26] |
Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
|
[27] |
Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
|
[28] |
Yue X F 2012 Chin. Phys. B 21 073401
|
[29] |
Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
|
[30] |
Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
|
[31] |
Chu T S 2009 J. Comput. Chem. 31 1385
|
[32] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[33] |
Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
|
[34] |
Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commn. Comput. Chem. 1 15
|
[35] |
Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
|
[36] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[37] |
Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
|
[38] |
Li R J, Han K L, Li F E, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[39] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[40] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[41] |
Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323
|
[42] |
Ding Y J and Shi Y 2011 Comput. Theor. Chem. 963 306
|
[43] |
Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|