Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 023105    DOI: 10.1088/1674-1056/ab6554
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces

Juan Zhao(赵娟)1, Ting Xu(许婷)2, Lu-Lu Zhang(张路路)1, Li-Fei Wang(王立飞)1
1 School of Science, Shandong Jiaotong University, Jinan 250357, China;
2 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  We carry out quantum scattering dynamics and quasi-classical trajectory (QCT) calculations for the O+H2+ reactive collision in the ground (12A') and first excited (12A') potential energy surface. We calculate the reaction probabilities of O+H2+(v=0,j=0)→OH++H and O+H2+(v=0,j=0)→OH+H+ reaction for total angular momentum J=0. The results calculated by QCT are consistent with those from quantum mechanical wave packet. Using the QCT method, we generate in the center-of-mass frame the product state-resolved integral cross-sections (ICSs); two commonly used generalized polarization-dependent differential cross-sections (PDDCSs), (2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt); and three angular distributions of the product rotational vectors, P(θr ), P(φr ), and P(θr,φr). We discuss the influence on the scalar and vector properties of the potential energy surface, the collision energy, and the isotope mass. Since there are deep potential wells in these two potential energy surfaces, their kinetic characteristics are similar to each other and the isotopic effect is not obvious. However, the well depths and configurations of the two potential energy surfaces are different, so the effects of isotopic substitution on the integral cross-section and the rotational polarization of product are different.
Keywords:  quasi-classical trajectory      state-to-state      isotopic substitution      rotational polarization of product  
Received:  08 November 2019      Revised:  04 December 2019      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504206) and the Shandong Jiaotong University PhD Research Start-up Fund, China.
Corresponding Authors:  Juan Zhao     E-mail:  zhaojuan@sdjtu.edu.cn

Cite this article: 

Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞) Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces 2020 Chin. Phys. B 29 023105

[1] Duley W W and Williams D A 1986 Mon. Not. R. Astr. Soc. 223 177
[2] Xu Y, Xiong B, Chang Y C and Ng C Y 2012 J. Chem. Phys. 137 241101
[3] Martínez R, Millán J and González M 2004 J. Chem. Phys. 120 4705
[4] González M, Gilibert M, Aguilar A and Sayós R 1993 J. Chem. Phys. 98 2927
[5] Martínez R, Sierra J D, Gray S K and González M 2006 J. Chem. Phys. 125 164305
[6] Martínez R, Sierra J D and González M 2005 J. Chem. Phys. 123 174312
[7] Martínez R, Lucas J M, Giménez X, Aguilar A and González M 2006 J. Chem. Phys. 124 144301
[8] Xu W W, Li W L, Lv S J, Zhai H S, Duan Z X and Zhang P Y 2012 J. Phys. Chem. A 116 10882
[9] Yuan M L and Li W T 2019 Acta Phys. Sin. 68 083401 (in Chinese)
[10] Pablo G, Fermín H L and Miguel G 2013 J. Phys. Chem. A 117 5393
[11] Gamallo P, Defazio P and González M 2011 J. Phys. Chem. A 115 11525
[12] Chu T S, Lu R F, Han K L, Tang X N, Xu H F and Ng C Y 2005 J. Chem. Phys. 122 244322
[13] Tang X N, Houchins C, Lau K C, Ng C Y, Dressler R A, Chiu Y H, Chu T S and Han K L 2007 J. Chem. Phys. 127 164318
[14] McClure D J, Douglass C H and Gentry W R 1977 J. Chem. Phys. 67 2362
[15] Paniagua M, Martínez R, Gamallo P and González M 2014 Phys. Chem. Chem. Phys. 16 23594
[16] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[17] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[18] Gamallo P, Defazio P, Gonzalez M, Paniagua M and Petrongolo C 2015 Phys. Chem. Chem. Phys. 17 23392
[19] Zhang Y, Cao E, Gao S, Huang X, Meng Q and Song Y 2017 Int. J. Quan. Chem. 117 e25343
[20] Zhang A J, Zang K L, Jia J F, Wu H S, Wang Y and Zhao G G 2017 Chem. Phys. Lett. 676 77
[21] Martínez R, Paniagua M, Mayneris-Perxachs J, Gamallo P and González M 2017 Phys. Chem. Chem. Phys. 19 3857
[22] Assafrão D and Mohallem J R 2007 J. Phys. B 40 F85
[23] Kimura T, Matsushita T, Ueda K, Tamura K and Takagi S 2001 J. Ther. Anal. Calo. 64 231
[24] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[25] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
[26] Chu T 2010 J. Comput. Chem. 31 1385
[27] Zhang J, Gao S B, Song Y Z and Meng Q T 2015 Int. J. Quantum Chem. 115 231
[28] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[29] Li W T, Yu W and Yao M H 2018 Acta Phys. Sin. 67 103401 (in Chinese)
[30] Yao L, Ju L P, Chu T S and Han K L 2006 Phys. Rev. A 74 062715
[31] Davidsson J and Nyman G 1990 J. Chem. Phys. 92 2407
[32] Nyman G and Davidsson J 1990 J. Chem. Phys. 92 2415
[33] Bowman J M, Gazdy B and Sun Q 1989 J. Chem. Phys. 91 2859
[34] Truhlar D G 1979 J. Phys. Chem. 83 188
[35] Bonnet L and Rayez J C 2004 Chem. Phys. Lett. 397 106
[36] Varandas A J C 2007 Chem. Phys. Lett. 439 386
[37] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[38] Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
[39] Lin S Y, Han K L and Zhang J Z H 2000 Chem. Phys. Lett. 324 122
[40] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[41] Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
[42] Zhang W, Li Y, Xu X and Chen M 2010 Chem. Phys. 367 115
[43] Chu T S, Han K L and Schatz G C 2007 J. Phys. Chem. A 111 8286
[44] Li J and Guo H 2013 Chin. J. Chem. Phys. 26 627
[45] Song H, Li A and Guo H 2016 J. Phys. Chem. A 120 4742
[46] Zhao J 2013 J. Chem. Phys. 138 134309
[47] Murray C, Pearce J K, Rudić S, Retail B and Orr-Ewing A J 2005 J. Phys. Chem. A 109 11093
[48] Polanyi J C 1987 Angew. Chem. Int. Ed. 26 952
[49] Yue D G, Zhang L L, Zhao J, Song Y Z and Meng Q 2019 Comput. Theor. Chem. 1155 82
[50] Meng Q 2018 Chem. Phys. 509 131
[51] Aldegunde J, Jambrina P G, González Sanchez L, Herrero V J and Aoiz F J 2015 J. Phys. Chem. A 119 12245
[52] Zhang L, Gao S, Song Y and Meng Q 2018 J. Phys. B 51 065202
[53] Sáez Rábanos V, Verdasco J E, Aoiz F J and Herrero V J 2016 Physi. Chem. Chem. Phys. 18 13530
[54] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[55] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[1] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[2] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[3] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[4] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[5] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[6] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[7] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[8] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[9] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[10] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[11] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[12] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
[15] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
No Suggested Reading articles found!