|
|
Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2 |
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路) |
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract The stereodynamical properties of H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2 reactions are studied in this paper by using the quasi-classical trajectory (QCT) method with different collision energies on the double many-body expansion (DMBE) potential energy surface (PES) (Poveda L A and Varandas A J C 2005Phys. Chem. Chem. Phys. 7 2867). In a range of collision energy from 2 to 20 kcal/mol, the vibrational rotational quantum numbers of the NH molecules are specifically investigated on v=0 and j=0, 2, 5, 10 respectively. The distributions of P(θr), P(φr), P(θr, φr), (2π/σ)(dσ00/dωt) differential cross-section (DCSs) and integral cross-sections(ICSs) are calculated. The ICSs, computed for collision energies from 2 kcal/mol to 20 kcal/mol, for the ground state are in good agreement with the cited data. The results show that the reagent rotational quantum number and initial collision energy both have a significant effect on the distributions of the k-j', the k-k'-j', and the k-k' correlations. In addition, the DCS is found to be susceptible to collision energy, but it is not significantly affected by the rotational excitation of reagent.
|
Received: 27 January 2016
Revised: 20 April 2016
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. 2016ZRB01066) and the University Student's Science and Technology Innovation Fund of Ludong University, China (Grant No. 131007). |
Corresponding Authors:
Yong-Jiang Yu
E-mail: y13225457193@163.com
|
Cite this article:
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路) Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2 2016 Chin. Phys. B 25 083402
|
[1] |
Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
|
[2] |
Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
|
[3] |
Morley C 1981 Sym. Combust. 18 23
|
[4] |
Koshi M and Yoshimura M 1990 J. Chem. Phys. 93 8703
|
[5] |
Davidson D F and Hanson R K 1990 Int. J. Chem. Kinet. 22 843
|
[6] |
Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
|
[7] |
Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
|
[8] |
Varandas A J C 1988 Adv. Chem. Phys. 74 255
|
[9] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[10] |
Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
|
[11] |
Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P and Duan Y B 2011 Chin. Phys. Lett. 28 93403
|
[12] |
Yu Y J, Xu Q and Xu X W 2011 Chin. Phys. B 20 123402
|
[13] |
Xia W Z, Yu Y J and Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)
|
[14] |
Yu Y J, Wang D H, Feng S X and Xia W Z 2012 J. Theor. Comput. Chem. 11 763
|
[15] |
Han B R, Yang H, Zheng Y J, Varandas A J C 2010 Chem. Phys. Lett. 493 225
|
[16] |
Wang M L, Han K L and He G Z 1988 J. Phys. Chem. A 102 10204
|
[17] |
Shaferray N E, Orrewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
|
[18] |
Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
|
[19] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[20] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[21] |
Lu R F, Wang Y H and Deng K M 2013 J. Comput. Chem. 34 1735
|
[22] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[23] |
Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
|
[24] |
Chen M D, Han K L and Lou N Q 2002 J. Chem. Phys. 283 463
|
[25] |
Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
|
[26] |
Tan R S, Liu X G and Hu M 2012 Chin. Phys. Lett. 29 123101
|
[27] |
Wei Q 2013 Chin. Phys. Lett. 30 073101
|
[28] |
Xie T X, Zhang Y Y, Shi Y, Li Z R and Jin M X 2015 Chin. Phys. B 24 043402
|
[29] |
He D, Wang M S, Yang C L and Jiang Z J 2013 Chin. Phys. B 22 068201
|
[30] |
Li Y Q, Yang Y F, Yu Y, Zhang Y J and Ma F C 2016 Chin. Phys. B 25 023401
|
[31] |
Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
|
[32] |
Wei Q 2015 Chin. Phys. Lett. 32 13101
|
[33] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
|
[34] |
Chen X P and Li X L 2013 Chin. Phys. Lett. 30 064702
|
[35] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[36] |
Wang M X, Wang M S, Yang C L, Liu J, Ma X G and Wang L Z 2015 Acta Phys. Sin. 64 043402 (in Chinese)
|
[37] |
Chi X L, Zhao J F, Zhang Y J, Ma F C and Li Y Q 2015 Chin. Phys. B 24 053401
|
[38] |
Li H Z, Liu X G, Tan R S and Hu M 2015 Chin. Phys. Lett. 32 83102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|