|
|
Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction |
Yong-Qing Li(李永庆)1,2, Yun-Fan Yang(杨云帆)1, Yang Yu(于洋)1, Yong-jia Zhang(张永嘉)1, Feng-Cai Ma(马凤才)1 |
1. Department of Physics, Liaoning University, Shenyang 110036, China;
2. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
|
|
Abstract Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction based on the first excited state NH2(12A') potential energy surface reported by Li et al. [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.
|
Received: 26 July 2015
Revised: 26 October 2015
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141and 11274149), the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2015040), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2014-1685),and the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil and the China Postdoctoral Science Foundation (Grant No. 2014M550158). |
Corresponding Authors:
Feng-Cai Ma
E-mail: yqli@lnu.edu.cn
|
Cite this article:
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才) Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction 2016 Chin. Phys. B 25 023401
|
[1] |
Wright C A and Winkler A N 1968 Active Nitrogen (New York: Academic)
|
[2] |
Alagia M, Balucani N, Cartechini L, Cachavecchia P, Volpi G G, Pederson L A, Schatz G C, Lendvay G, Harding L B, Hollebeek T, Ho T S and Rabitz H 1999 J. Chem. Phys. 110 8857
|
[3] |
Dodd J A Lipson S J Flanagan D J, Blumberg W A M Pearson J C and Green B D 1991 J. Chem. Phys. 94 4301
|
[4] |
Umemoto H and Matsumoto K 1996 J. Chem. Phys. 104 9640
|
[5] |
Umemoto H, Asai T and Kimura Y 1997 J. Chem. Phys. 106 4985
|
[6] |
Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644
|
[7] |
Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C 2012 J. Chem. Phys. 136 194705
|
[8] |
Funken K, Engels B, Peyerimhoff S D and Grein F 1990 Chem. Phys. Lett. 172 180
|
[9] |
Chu T S and Han K L 2005 J. Phys. Chem. A 109 2050
|
[10] |
Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
|
[11] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[12] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
|
[13] |
Chu T S, Lu R F, Han K L, Tang X N, Xu H F and Ng C Y 2005 J. Chem. Phys. 122 244322
|
[14] |
Brandi R, Leonardi E and Petrongolo C 1997 J. Phys. Chem. A 101 5696
|
[15] |
Peyerimhoff S D and Buenker R J 1979 Can. J. Chem. 57 3182
|
[16] |
Takayanagui T, Kobayashi H and Tsunashima S 1996 J. Chem. Soc. Faraday Trans. 92 1311
|
[17] |
Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 6669
|
[18] |
Pederson L, Schatz G, Hollebeek T, Ho T S, Rabitz H and Harding L B 2000 J. Phys. Chem. A 104 2301
|
[19] |
Jensen P Buenker R J Hirsch G and Rai S N 1990 Mol. Phys. 70 443
|
[20] |
Li Y Q, Ma F C and Sun M T 2013 J. Chem. Phys. 139 154305
|
[21] |
Rodrigues S P J, Fontes A C G, Li Y Q and Varandas A J C 2011 Chem. Phys. Lett. 516 17
|
[22] |
Suzuki T, Shihira Y, Sato T, Umemoto H and Tsunashima S 1993 J. Chem. Soc. Faraday Trans. 89 995
|
[23] |
Buenker R J, Peric M Peyerimhoff S D and Marian R 1981 Mol. Phys. 43 987
|
[24] |
Li Y Q Yuan J C, Chen M D, Ma F C and Sun M T 2013 J. Comput. Chem. 34 1686
|
[25] |
Pederson L A, Schatz G C, Ho T, Hollebeek T, Rabitz H and Harding L B 1999 J. Chem. Phys. 110 9091
|
[26] |
Qu Z, Zhu H, Schinke R, Adam L and Hack W 2005 J. Chem. Phys. 122 20431
|
[27] |
Vetter R, Zülicke L, Koch A, Van D E F and Peyerimhoff S D 1996 J. Chem. Phys. 104 5558
|
[28] |
Zhou S L, Xie D, Lin S Y and Guo H 2008 J. Chem. Phys. 128 224316
|
[29] |
Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 404
|
[30] |
Bella S and Schaefer H F 1977 J. Chem. Phys. 67 5173
|
[31] |
Li X Wang M Pino I Yang C and Ma L 2009 Phys. Chem. Chem. Phys. 11 10438
|
[32] |
Li X Wang M Pino I Yang C and Wu J 2010 Phys. Chem. Chem. Phys. 12 7942
|
[33] |
Adam L, Hack W, McBane G C, Zhu H and Schinke W R 2007 J. Chem. Phys. 126 034304
|
[34] |
Wang M L Han K L and He G Z 1998 J. Phys. Chem. A 102 20204
|
[35] |
Wang M L Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[36] |
Chen M D Han K L and Lou N Q 2002 Chem. Phys. 283 463
|
[37] |
Chen M D Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[38] |
Zhang X and Han K L 2006 Int. J. Quanttum. Chem. 106 1815
|
[39] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[40] |
Cheng D H, Yuan J C and Chen M D, 2014 J. Phys. Chem. A 1 55
|
[41] |
Liu S L and Shi Y 2010 Chin. Phys. Lett. 27 123103
|
[42] |
Ding Y J and Shi Y 2011 Comput. Theor. Chem. 963 306
|
[43] |
Zhang Y Y, Shi Y, Xie T X, Jin M M and Hu Z 2013 Chin. Phys. B 22 083402
|
[44] |
Gray S K, Goldfield E M, Schatz G C and Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141
|
[45] |
Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
|
[46] |
Alexander A J Aoiz F J Banares L Brouard M and Simons J P 2000 Phys. Chem. Chem. Phys. 2 571
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|