|
|
Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction |
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇) |
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The dynamics of the ground-state reaction of CH4+O(3P) → CH3(ν=0) +OH(ν'=0) have attracted a great deal of attention both theoretically and experimentally. This rapid communication represents extensive quasi-classical trajectory calculations of the vibrational distributions on a unique full-dimensional ab initio potential energy surface for the title reaction, at the collision energy of relevance to previous crossed molecular beam experiments. The surface is constructed using the all electrons coupled-cluster singles and doubles approach plus quasi-perturbative triple excitations with optimized basis sets. A modified Shepard interpolation method is also employed for the construction. Good agreement between our calculations and the available experimental results has been achieved, opening the door for accurate dynamics on this surface.
|
Received: 31 January 2018
Revised: 04 April 2018
Accepted manuscript online:
|
PACS:
|
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51574016 and 51604018). |
Corresponding Authors:
Zhong-An Jiang, Ya Peng
E-mail: jza1963@263.net;pengyaustb@sina.com
|
Cite this article:
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇) Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction 2018 Chin. Phys. B 27 063401
|
[1] |
Peng Y, Jiang Z A and Chen J S 2017 J. Phys. Chem. A 121 2209
|
[2] |
Peng Y, Jiang Z A and Chen J S 2018 Chin. Phys. B 27 023401
|
[3] |
Zhang L, Luo W L, Ruan W, Jiang G and Zhu Z H 2008 Chin. Phys. B 17 2023
|
[4] |
Hou X W, Wan M F and Ma Z Q 2012 Chin. Phys. B 21 103301
|
[5] |
Galashev A Y 2013 Chin. Phys. B 22 123602
|
[6] |
Li Y L, Suleimanov Y V, Yang M H, Green W H and Guo H 2013 J. Phys. Chem. Lett. 4 48
|
[7] |
Liu R, Yang M H, Gábor C, Bowman J M, Li J and Guo H 2012 J. Phys. Chem. Lett. 3 3776
|
[8] |
Jiang B and Guo H 2014 J. Chin. Chem. Soc. 61 847
|
[9] |
Thanh L N and Stanton J F 2017 J. Chem. Phys. 147 152704
|
[10] |
Shao K, Fu B and Zhang D H 2015 Phys. Chem. Chem. Phys. 17 24098
|
[11] |
Espinosa-Garcia J, Rangel C and Garcia-Bernaldez J C 2015 Phys. Chem. Chem. Phys. 17 6009
|
[12] |
Espinosa-Garcia J and Garcia-Bernáldez J C 2000 Phys. Chem. Chem. Phys. 2 2345
|
[13] |
Zhang J and Liu K 2011 Chem. Asian J. 6 3132
|
[14] |
Yang J Y, Shao K J, Zhang D, Shuai Q A, Fu B, Zhang D H and Yang X M 2014 J. Phys. Chem. Lett. 5 3106
|
[15] |
Arezoo D, Nicola S, Lucio C C, Manfred B and Gianaurelio C 2014 Chem. Phys. 443 53
|
[16] |
Sweeney G M, Watson A and McKendrick K G 1997 J. Chem. Phys. 106 9172
|
[17] |
Ausfelder F, Kelso H and McKendrick K G 2002 Phys. Chem. Chem. Phys. 4 473
|
[18] |
Troya D, Schatz G C, Garton D J, Brunsvold A L and Minton T K 2004 J. Chem. Phys. 120 731
|
[19] |
Troya D and Garcia-Molina E 2005 J. Phys. Chem. A 109 3015
|
[20] |
Garton D J, Minton T K, Troya D, Pascual R and Schatz G C 2003 J. Phys. Chem. A 107 4583
|
[21] |
Zhang J M, Lahankar S A, Garton D J, Minton T K, Zhang W Q and Yang X M 2011 J. Phys. Chem. A 115 10894
|
[22] |
Suzuki T and Hirota E 1993 J. Chem. Phys. 98 2387
|
[23] |
Andresen P and Luntz A C 1980 J. Chem. Phys. 72 5842
|
[24] |
Kleinermanns K and Luntz A C 1981 J. Phys. Chem. 85 1966
|
[25] |
Wang F and Liu K 2010 Chem. Sci. 1 126
|
[26] |
Guo H and Liu K 2016 Chem. Sci. 7 3992
|
[27] |
Lin J, Zhou J, Shiu W and Liu K 2003 Science 300 966
|
[28] |
Zhang B, Liu K and Czako G 2015 J. Phys. Chem. A 119 7190
|
[29] |
Zhang B and Liu K 2005 J. Phys. Chem. A 109 6791
|
[30] |
Pan H and Liu K 2014 J. Chem. Phys. 140 191101
|
[31] |
Joel M Bowman, Gabor Czako and Fu B 2011 Phys. Chem. Chem. Phys. 13 8094
|
[32] |
Fu B, Shan X, Zhang D H and David C Clary 2017 Chem. Soc. Rev. 46 7625
|
[33] |
Walch S P and Dunning T H 1980 J. Chem. Phys. 72 3221
|
[34] |
Gonzalez C, McDouall J J W and Schlegel H B 1990 J. Phys. Chem. 94 7467
|
[35] |
González M, Hernando J, Millán J and Sayós R 1999 J. Chem. Phys. 110 7326
|
[36] |
Orlando R N, Francisco M B C and Truhlar D G 1999 J. Chem. Phys. 111 10046.
|
[37] |
Shao K, Fu B and Zhang D H 2015 Chin. J. Chem. Phys. 28 403
|
[38] |
Corchado J C, Espinosa-Garcia J, Roberto-Neto O, Chuang Y Y and Truhlar D G 1998 J. Phys. Chem. A 102 4899
|
[39] |
Fermin H and Uwe U 2002 J. Chem. Phys. 117 4635
|
[40] |
Czakó G and Bowman J M 2012 Proc. Natl. Acad. Sci. USA 109 7997
|
[41] |
González-Lavado E, Corchado J C and Espinosa-Garcia J 2014 J. Chem. Phys. 140 064310
|
[42] |
Gonzĺez-Lavado E, Corchado J C, Suleimanov Y V, Green W H and Espinosa-Garcia J 2014 J. Phys. Chem. A 118 3243
|
[43] |
Czakó G 2014 J. Chem. Phys. 140 231102
|
[44] |
Zhao H L, Wang W J and Zhao Y 2016 J. Phys. Chem. A 120 7589
|
[45] |
Joseph T, Steckler R and Truhlar D G 1987 J. Chem. Phys. 87 7036
|
[46] |
Meredith J and Gilbert R 1995 J. Chem. Phys. 102 5669
|
[47] |
Martinez R, Enriquez P, Puyuelo M and Gonzalez M 2012 J. Phys. Chem. A 116 5026
|
[48] |
Czakó G, Liu R, Yang M, Bowman J M and Guo H 2013 J. Phys. Chem. A 117 6409
|
[49] |
Frisch M J, Trucks G W, Schlegel H B, et al. 2010 Gaussian 09, Wallingford CT:Gaussian, Inc., see http://www.gaussian.com/
|
[50] |
Zheng J J, Zhao Y and Truhlar D G 2009 J. Chem. Theor. Comput. 5 808
|
[51] |
Schaefer H F 1998 Encyclopedia of Computational Chemistry (London:Jhon Wiley and Sons)
|
[52] |
Partridge H and Schwenke D W 1997 J. Chem. Phys. 106 4618
|
[53] |
Ma H, Zhang C, Zhang Z, Liu X and Bian W 2012 Adv. Phys. Chem. 2012 236750
|
[54] |
Jordan M, Thompson K and Collins M 1995 J. Chem. Phys. 102 5647
|
[55] |
Thompson K, Jordan M and Collins M 1998 J. Chem. Phys. 108 8302
|
[56] |
Ryan P A 1999 J. Chem. Phys. 111 816
|
[57] |
Michael A 2002 Theor. Chem. Acc. 108 313
|
[58] |
Ischtwan J and Collins M 1994 J. Chem. Phys. 100 8080
|
[59] |
Morris M and Jordan M 2014 J. Chem. Phys. 140 204107
|
[60] |
Meredith Jordan, Keiran Thompson, Ryan Bettens, et al. GROW, version 2.2, it is a collection of scripts and programs that allow the user to construct molecular potential energy surfaces for either unimolecular/bimolecular reactions or bound-state systems
|
[61] |
Crittenden D and Jordan M 2005 J. Chem. Phys. 122 044102
|
[62] |
Westenberg A A and de Haas N 1967 J. Chem. Phys. 46 490
|
[63] |
Monge-Palacios M, Gonzalez-Lavado E and Espinosa-Garcia J 2014 J. Chem. Phys. 141 094307
|
[64] |
Simpson W R, OrrEwing A J, Rakitzis T, Kandel S and Zare R N 1995 J. Chem. Phys. 103 7299
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|