Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 038102    DOI: 10.1088/1674-1056/24/3/038102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process

Wang Tao (王涛)a, Yu He (于贺)a, Dong Xiang (董翔)a, Jiang Ya-Dong (蒋亚东)a, Wu Rui-Lin (胡锐麟)b
a School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Center for Plasma Material Interaction, Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
Abstract  

An original numerical model, based on the standard Berg model, is used to simulate the growth mechanism of N-doped VOx deposited with changing oxygen flow in the reactive gas mixture. In order to compare with the numerical model, N-doped VOx films are prepared by reactive magnetron sputtering from a metallic vanadium target immersed in a reactive gas mixture of Ar+O2+N2. Both experimental and numerical results show that the addition of N2 to the process alleviates the hysteresis effect with respect to the oxygen supply. Film compositions obtained from the XPS analysis are compared to the numerical results and the agreement is satisfactory. The results also show that the compound of VN is only found at very low O concentration because of the replacement reaction of VN by O2 atoms with higher oxygen flow rate.

Keywords:  N-doped vanadium oxide (VOx)      XPS analysis  
Received:  01 July 2014      Revised:  28 September 2014      Accepted manuscript online: 
PACS:  81.15.Cd (Deposition by sputtering)  
Corresponding Authors:  Yu He     E-mail:  yuhe@uestc.edu.cn

Cite this article: 

Wang Tao (王涛), Yu He (于贺), Dong Xiang (董翔), Jiang Ya-Dong (蒋亚东), Wu Rui-Lin (胡锐麟) Modeling and experiments of N-doped vanadium oxide prepared by a reactive sputtering process 2015 Chin. Phys. B 24 038102

[1] Wei X J, Liang C J, Guang K P, De H, Nie Y X, Zhu S Q, Huang F, Zhang W W and Zheng W 2008 Chin. Phys. B 17 3512
[2] Wei X J and Nie Y X 2002 Chin. Phys. B 11 737
[3] Wang T, Yu H, Dong X, Jiang Y, Chen C and Roland W 2014 Chin. Phys. B 23 088113
[4] Wang T, Jiang Y, Yu H, Wu Z and Zhao H 2011 Chin. Phys. B 20 038101
[5] Han Y H, Kim K T, Shin H J, Moon S and Choi I H 2005 Appl. Phys. Lett. 86 254101
[6] Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y and Lim Y S 2005 Appl. Phys. Lett. 86 242101
[7] Luo Z F, Wu Z M, Xu X D, Du M, Wang T and Jiang Y D 2011 Mater. Sci. Eng. B 176 762
[8] Chae B G, Kim H T and Yun S J 2008 Electrochem. Solid. ST 11 53
[9] Soltani M, Chaker M, Haddad E, Kruzelecky R V and Margot J 2004 Appl. Phys. Lett. 85 1958
[10] Hwang H S, Oh S H, Kim H S, Cho W I, Cho B W and Lee D Y 2004 Electrochim. Acta 50 485
[11] Mai L Q, Hu B, Hu T, Chen W and Gu E D 2006 J. Phys. Chem. B 110 19083
[12] Manning T D, Parkin I P, Pemble M E, Sheel D and Vernardou D 2004 Chem. Mater. 16 744
[13] Jin P, Nakao S and Tanemura S 1998 Thin Solid Films 324 151
[14] Chen B, Yang D F, Charpentier P A and Zeman M 2009 Sol. Energy Mater. Sol. Cells 93 1550
[15] Berg S and Nyberg T 2005 Thin Solid Films 476 215
[16] Jonsson L B, Nyberg T and Berg S 2000 J. Vac. Sci. Technol. A 18 503
[17] Strijckmans K, Leroy W P, Gryse R and Depla D 2012 Surf. Coat. Tech. 206 3666
[18] Depla D, Heirwegh S, Mahieu S, Haemers J and Gryse R D 2007 J. Appl. Phys. 101 013301
[19] Sarhammar E, Strijckmans K, Nyberg T, Steenberge S, Berg S and Depla D 2013 Surf. Coat. Tech. 232 357
[20] Kubart T, Depla D, D. Martin M, Nyberg T and Berg S 2008 Appl. Phys. Lett. 92 221501
[21] Severin D, Kappertz O, Kubart T, Nyberg T, Berg S, Pflug A, Siemers M and Wuttig M 2006 Appl. Phys. Lett. 88 161504
[22] Kubart T, Trinh D H, Liljeholm L, Hultman L, Hogberg H, Nyberg T and Berg S 2008 J. Vac. Sci. Technol. A 26 565
[23] Pflug A, Szyszka B, Sittinger V and Niemann J 2003 Proceedings of Annual Technical Conference-Society of Vacuum Coaters 241
[24] Ngaruiya J, Kappertz O, Liesch C, Muller P, Dronskowski R and Wuttig M 2004 Phys. Stat. Sol. 201 967
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[3] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[4] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[5] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[6] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[7] Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors
Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔). Chin. Phys. B, 2019, 28(6): 067801.
[8] Controllable fabrication of self-organized nano-multilayers in copper-carbon films
Wei-Qi Wang(王伟奇), Li Ji(吉利), Hong-Xuan Li(李红轩), Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), Jian-Min Chen(陈建敏). Chin. Phys. B, 2019, 28(3): 036802.
[9] Structural and electrical properties of reactive magnetron sputtered yttrium-doped HfO2 films
Yu Zhang(张昱), Jun Xu(徐军), Da-Yu Zhou(周大雨), Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Chi-Kyu Choi. Chin. Phys. B, 2018, 27(4): 048103.
[10] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[11] Preparation of Se-based solar cell using spin-coating method in ambient condition
Menghua Zhu(朱孟花), Yaxin Deng(邓雅心), Weiwei Liu(刘伟伟), Xin Li(李欣). Chin. Phys. B, 2018, 27(1): 015202.
[12] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[13] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[14] Initial growth and microstructure feature of Ag films prepared by very-high-frequency magnetron sputtering
Yue Zhang(张悦), Chao Ye(叶超), Xiang-Ying Wang(王响英), Pei-Fang Yang(杨培芳), Jia-Min Guo(郭佳敏), Su Zhang(张苏). Chin. Phys. B, 2017, 26(9): 095206.
[15] Effect of driving frequency on the structure of silicon grown on Ag (111) films by very-high-frequency magnetron sputtering
Jia-Min Guo(郭佳敏), Chao Ye(叶超), Xiang-Ying Wang(王响英), Pei-FangYang(杨培芳), Su Zhang(张苏). Chin. Phys. B, 2017, 26(6): 065207.
No Suggested Reading articles found!