Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 067801    DOI: 10.1088/1674-1056/28/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors

Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔)
School of Optoelectronic Information, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China
Abstract  

A gradient refractive structured NiCr film that has a high extinction coefficient at far infrared range (8-μm-24 μm) is presented as an absorber for pyroelectric infrared detectors. The absorber features high absorption efficiency due to the low reflection off the structured surface and high absorption across the film thickness. The refractive index and extinction coefficient are extracted using spectroscopic ellipsometry. It is found that the single NiCr film exhibits an increasing refractive index as the gas atmosphere pressure increases, hence the three-layer gradient NiCr absorber can be fabricated by adjusting the gas atmosphere pressure during sputtering deposition. Essential Macleod software has been used to generate an efficient film structure design and the calculations show similar absorptance trend compared to the experimental measurement result. The results indicate that the gradient refractive structured metal thin film absorber can provide high absorption for applications in thermal sensing.

Keywords:  pyroelectric infrared detector      spectroscopic ellipsometry      deposition      thermal sensing  
Received:  26 December 2018      Revised:  22 March 2019      Accepted manuscript online: 
PACS:  78.40.Kc (Metals, semimetals, and alloys)  
  81.15.Cd (Deposition by sputtering)  
  81.05.Ea (III-V semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61875031 and 61421002).

Corresponding Authors:  He Yu     E-mail:  yuhe@uestc.edu.cn

Cite this article: 

Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔) Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors 2019 Chin. Phys. B 28 067801

[1] Lehman J, Sanders A, Hanssen L, Wilthan B, Zeng J and Jensen C 2010 Nano Lett. 10 3261
[2] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[3] Hendrickson J, Guo P J, Zhang Y B, Buchwald W and Soref R 2012 Opt. Lett. 37 371
[4] Lang W, Kuhl K and Sandmaier H 1991 TRANSDUCERS'91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, June 24-27, 1991, San Francisco, USA, pp. 635-638
[5] Setiadi D, He Z, Hajto J and Binnie T 1999 Infrared Phys. Technol. 40 267
[6] Lang W, Kuhl K and Sandmaier H 1992 Sens. Actuators A Phys. 34 243
[7] Brown R, Brewer P and Milton M 2002 J. Mater. Chem. 12 2749
[8] Shossig M 2012 Optical Absorption Layers For Infrared Radiation, ed. Gerlach G And Wolter (Berlin: Springer-Verlag) pp. 355-381
[9] Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba N D, Yumura M and Hata K 2009 Proc. Nat. Acad. Sci. USA 106 6044
[10] Gokhale J V, Shenderova A O, McGuire E G and Zadeh R M 2014 J. Microelectromech. Syst. 23 191
[11] Shang Y, Ye X, Wang Z, Feng J, Tang F and Wang X 2013 IEEE International Conference on Nanotechnology, August 5-8, 2013, Beijing, China, pp. 39-42
[12] Alves F, Karamitros A, Grbovic D, Kearney B and Karunasiri G 2012 Opt. Eng. 51 063801
[13] Parsons D A and Pedder J D 1988 J. Vac. Sci. Technol. A 6 1686
[14] Refractive index database, https://refractiveindex.info/[2019-3-22]
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[8] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[9] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[10] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[11] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[12] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[13] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[14] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[15] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
No Suggested Reading articles found!