CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering |
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉) |
Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract Copper (Cu)-doped ZrO2 (CZO) films with different Cu content (0 at.%~8.07 at.%) are successfully deposited on Si (100) substrates by direct current (DC) and radio frequency (RF) magnetron co-sputtering. The influences of Cu content on structural, morphological, optical and electrical properties of CZO films are discussed in detail. The CZO films exhibit ZrO2 monocline (111) preferred orientation, which indicates that Cu atoms are doped in ZrO2 host lattice. The crystallite size estimated form x-ray diffraction (XRD) increases by Cu doping, which accords with the result observed from the scanning electron microscope (SEM). The electrical resistivity decreases from 2.63 Ω.cm to 1.48 Ω·cm with Cu doping content increasing, which indicates that the conductivity of CZO film is improved. However, the visible light transmittances decrease slightly by Cu doping and the optical band gap values decrease from 4.64 eV to 4.48 eV for CZO films.
|
Received: 10 April 2017
Revised: 27 June 2017
Accepted manuscript online:
|
PACS:
|
68.55.A-
|
(Nucleation and growth)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272224 and 11164031). |
Corresponding Authors:
Guang-Rui Gu
E-mail: grgu@ybu.edu.cn
|
Cite this article:
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉) Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering 2017 Chin. Phys. B 26 106801
|
[1] |
Reisfeld R, Zelner M and Patra A 2000 J. Alloys Compd. 300 147151
|
[2] |
Pamu D, Sudheendran K, Krishna M G, Raju K C J and Bhatnagar A K 2009 Thin Solid Films 517 15871591
|
[3] |
Lee W G, Cho K H, Lee S B, Park S B and Jang H 2009 J. Alloys Compd. 474 268272
|
[4] |
Padmamalini N and Ambujam K 2014 Superlattices Microstruct. 76 376384
|
[5] |
Khojier K, Savaloni H and Jafari F 2013 J. Theor. Appl. Phys. 7 55
|
[6] |
Chakraborty S, Bera M K, Dalapathi G K, Paramanik D, Varma S, Bose P K, Bhattacharya S and Maiti C K 2006 Semicond. Sci. Technol. 21 467472
|
[7] |
Ma C Y and Zhang Q Y 2008 Vacuum 82 847851
|
[8] |
Hembram K P S S, Dutta G, Waghmare U V and Rao G M 2007 Physica B 399 2126
|
[9] |
Zhang H H, Ma C Y and Zhang Q Y 2009 Vacuum 83 13111316
|
[10] |
Septawendar R, Purwasasmita B S, Suhanda, Nurdiwijayanto L and Edwin F 2011 J. Ceram. Process. Res. 12 110113
|
[11] |
Pakma O, özdemir C, Kariper I A, özaydin C and Güllü ö 2016 Appl. Surf. Sci. 377 159166
|
[12] |
Ray J C, Pramanik P and Ram S 2001 Mater. Lett. 48 281291
|
[13] |
Xiao Q L, Xu C, Shao S Y, Shao J D and Fan Z X 2009 Vacuum 83 366371
|
[14] |
Jeong J and Yong K 2003 J. Cryst. Growth 254 6569
|
[15] |
Gordon G R, Becker J, Hausmann D and Suh S 2001 Chem. Mater. 13 24632464
|
[16] |
Berlin I J and Joy K 2015 Physica B 457 182187
|
[17] |
Sethi G, Sunal P, Horn M W and Lanagan M T 2009 J. Vac. Sci. Technol. A 27 577583
|
[18] |
Thaveedeetrakul A, Witit-anun N and Boonamnuayvitay V 2012 Appl. Surf. Sci. 258 26122619
|
[19] |
Kumar A, Dhiman P and Singh M 2016 Ceram. Int. 42 79187923
|
[20] |
Bruns S, Vergöhl M, Werner O and Wallendorf T 2012 Thin Solid Films 520 41224126
|
[21] |
Musil J, Sklenka J, Čerstvy R, Suzuki T, Mori T and Takahashi M 2012 Surf. Coat. Technol. 207 355360
|
[22] |
Myagkov V G, Bykova L E, Bayukov O A, Zhigalov V S, Tambasov I A, Zharkov S M, Matsynin A A and Bondarenko G N 2015 J. Alloys Compd. 636 223228
|
[23] |
Joy K 2014 Thin Solid Films 556 99104
|
[24] |
Seidel S, Sabelfeld A, Strohmeyer R, Schreiber G, Klemm V, Rafaja D, Joseph Y and Heitmann J 2016 Thin Solid Films 606 1318
|
[25] |
Korsunska N, Baran M, Polishchuk Y, Kolomys O, Stara T, Kharchenko M, Gorban O, Strelchuk V, Venger Y, Kladko V and Khomenkovaa L 2015 ECS J. Solid State Sci. Technol. 4 103110
|
[26] |
Korsunska N, Polishchuk Y, Kladko V, Portier X and Khomenkova L 2017 Mater. Res. Express 4 035024
|
[27] |
Mukhtar M, Munisa L and Saleh R 2012 Mater. Sci. Appl. 3 543551
|
[28] |
Holzwarth U and Gibson N 2011 Nat. Nanotechnol. 6 534
|
[29] |
Anitha V S, Lekshmy S S and Joy K 2016 J. Alloys Compd. 675 331340
|
[30] |
Kumaravel R, Ramamurthi K, Sulania I, Asokan K and Kanjilal D 2011 Radiat. Phys. Chem. 80 435439
|
[31] |
Schuetze A P, Lewis W, Brown C and Geerts W J 2004 Am. J. Phys. 72 149153
|
[32] |
Sreedhar A, Kwon J H, Yi J, Kim J S and Gwag J S 2016 Mater. Sci. Semicond. Process. 49 814
|
[33] |
Presto S, Viviani M 2016 Solid State Ionics 295 111116
|
[34] |
Paraguay F, Yoshida M M, Morales J, Solis J and Estrada W 2000 Thin Solid Films 373 137140
|
[35] |
Tarwal N L, Gurav K V, Mujawar S H, Sadale S B, Nam K W, Bae W R, Moholkar A V, Kim J H, Patil P S and Jang J H 2014 Ceram. Int. 40 76697677
|
[36] |
Sandeep K M, Bhat S and Dharmaprakash S M 2017 J. Phys. Chem. Solids 104 3644
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|