Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018502    DOI: 10.1088/1674-1056/ab5d05
SPECIAL TOPIC—High-throughput screening and design of optoelectronic materials Prev   Next  

High-throughput fabrication and semi-automated characterization of oxide thin film transistors

Yanbing Han(韩炎兵)1,2,3, Sage Bauers1, Qun Zhang(张群)2, Andriy Zakutayev1
1 Materials Science Center, National Renewable Energy Laboratory, Golden CO 80401, USA;
2 Department of Materials Science, Fudan University, Shanghai 200433, China;
3 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  High throughput experimental methods are known to accelerate the rate of research, development, and deployment of electronic materials. For example, thin films with lateral gradients in composition, thickness, or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect the material properties under varying measurement conditions. Similarly, multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance. In this work, we apply these high throughput experimental methods to thin film transistors (TFTs), demonstrating combinatorial channel layer growth, device fabrication, and semi-automated characterization using sputtered oxide TFTs as a case study. We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library, such as channel thickness and length, channel cation compositions, and oxygen atmosphere during deposition. We also present a semi-automated method to measure the 44 devices fabricated on a 50 mm×50 mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time. Finally, we propose a fully automated characterization system for similar TFT libraries, which can be coupled with high throughput data analysis. These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.
Keywords:  combinatorial sputtering      indium zinc oxide (IZO) thin film transistor (TFT)      channel gradient      oxygen content  
Received:  11 September 2019      Revised:  27 November 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.60.Pg (Display systems)  
  81.15.Cd (Deposition by sputtering)  
Corresponding Authors:  Qun Zhang, Andriy Zakutayev     E-mail:  zhangqun@fudan.edu.cn;andriy.zakutayev@nrel.gov

Cite this article: 

Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev High-throughput fabrication and semi-automated characterization of oxide thin film transistors 2020 Chin. Phys. B 29 018502

[1] Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
[2] Kim G H, Du Ahn B, Shin H S, Jeong W H, Kim H J and Kim H J 2009 Appl. Phys. Lett. 94 233501
[3] Choi S H and Han M K 2012 Appl. Phys. Lett. 100 43503
[4] Lee S Y, Kim D H, Chong E, Jeon Y W and Kim D H 2011 Appl. Phys. Lett. 98 122105
[5] Yim J R, Jung S Y, Yeon H W, Kwon J Y, Lee Y J, Lee J H and Joo Y C 2012 Jpn. J. Appl. Phys. 51 11401
[6] Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J and Zakutayev A 2017 Appl. Phys. Rev. 4 011105
[7] Alberi K, Nardelli M B, Zakutayev A, Mitas L, Curtarolo S, Jain A, Fornari M, Marzari N, Takeuchi I and Green M L 2019 J. Phys. D. Appl. Phys. 52 13001
[8] Qin M, Lin Z, Wei Z, Zhu B, Yuan J, Takeuchi I and Jin K 2018 Chin. Phys. B 27 127402
[9] Wu J, Bollinger A T, He X and Božović I 2018 Chin. Phys. B 27 118102
[10] Siol S, Dhakal T P, Gudavalli G S, Rajbhandari P P, Dehart C, Baranowski L L and Zakutayev A 2016 ACS Appl. Mater. Interfaces 8 14004
[11] Iwasaki T, Itagaki N, Den T, Kumomi H, Nomura K, Kamiya T and Hosono H 2007 Appl. Phys. Lett. 90 242114
[12] McDowell M G, Sanderson R J and Hill I G 2008 Appl. Phys. Lett. 92 13502
[13] Oh S, Seob Yang B, Jang Kim Y, Sook Oh M, Jang M, Yang H, Kyeong Jeong J, Seong Hwang C and Joon Kim H 2012 Appl. Phys. Lett. 101 92107
[14] Ryu M K, Yang S, Park S H K, Hwang C S and Jeong J K 2009 Appl. Phys. Lett. 95 72104
[15] Kumar A and Flewitt A J 2016 J. Disp. Technol. 12 240
[16] Welch A W, Baranowski L L, Zawadzki P, DeHart C, Johnston S, Lany S, Wolden C A and Zakutayev A 2016 Prog. Photovoltaics Res. Appl. 24 929
[17] Eid J, Liang H, Gereige I, Lee S and Van J 2015 Prog. Photovoltaics Res. Appl. 23 269
[18] Han Y, Siol S, Zhang Q and Zakutayev A 2017 Chem. Mater. 29 8239
[19] Han Y, Matthews B E, Roberts D M, Talley K, Bauers S, Perkins C L, Zhang Q and Zakutayev A 2018 ACS Comb. Sci. 20 436
[20] Zaumseil J, Someya T, Bao Z, Loo Y L, Cirelli R and Rogers J A 2003 Appl. Phys. Lett. 82 793
[21] Ireland R M, Liu Y, Spalenka J W, Jaiswal S, Fukumitsu K, Oishi S, Saito H, Ryosuke M, Evans P G and Katz H E 2014 Phys. Rev. Appl. 2 44006
[22] Talley K R, Bauers S R, Melamed C L, Papac M C, Heinselman K N, Khan I, Roberts D M, Jacobson V, Mis A and Brennecka G L 2019 ACS Comb. Sci. 21 537
[1] Effect of oxygen content on dielectric characteristics of Cr-doped LaTiOx
Ming Ma(马铭), Yan Chen(陈彦), Yi-Min Cui(崔益民). Chin. Phys. B, 2018, 27(5): 057702.
[2] Investigation on dependence of BiFeO3 dielectric property on oxygen content
Lou Yan-Hui(娄艳辉), Song Gui-Lin(宋桂林), Chang Fang-Gao(常方高), and Wang Zhao-Kui(王照奎). Chin. Phys. B, 2010, 19(7): 077702.
No Suggested Reading articles found!